
The Online Metric Matching Problem for Doubling Metrics

Anupam Gupta∗ Kevin Lewi†

Abstract
In the online minimum-cost metric matching problem, we are given a metric space with k

servers. Requests arrive in an online fashion and each must be assigned to an as-yet-unmatched
server immediately upon arrival. An assigned request incurs a cost equal to the distance from
the server to which it was matched, and the goal is to minimize the total cost of the matching.
In this paper, we study this problem when the metric space is a line, and also when it is
doubling. For both of these settings we give O(log k)-competitive randomized algorithms,
which significantly reduces the gap between the current O(log2 k)-competitive randomized
algorithms and the constant-competitive lower bounds known for these settings.

The first two algorithms that we present operate by randomly embedding these metric
spaces into HSTs, and then running greedy algorithms on the resulting HSTs. Each algorithm
has a different method of randomly picking from among the closest available servers in the
HST. The first algorithm picks the closest available server in the HST which is also closest on
the original metric. We show that the cost incurred by the algorithm on the line is within a
constant factor of the cost incurred by the optimal matching on the HST. Our second algorithm
picks randomly from among the closest available servers in the HST, where the selection is
based upon how the servers are distributed within the tree. This algorithm is O(1)-competitive
for the types of HSTs obtained from embedding doubling metrics. The third algorithm that we
discuss is a very simple randomized algorithm that does not use tree embeddings, yet we are
still able to show that it is O(log k)-competitive on the line.

1 Introduction

In the online minimum-cost metric matching problem, the input is a metric space (V, d) with k
pre-specified servers S ⊆ V . The requests R = r1, r2, . . . , rk (with each ri ∈ V) arrive online
one-by-one; upon arrival each request must be immediately and irrevocably matched to an as-yet-
unmatched server. The cost of matching request r to server πr ∈ S is the distance d(r, πr) in the
underlying metric space. The goal is to match requests to servers so as to minimize the total cost of
the matching produced, which is simply the sum of the costs of individually matching each request.
As usual, we study the problem in the framework of competitive analysis, comparing the cost of
our algorithm’s matching to the cost of the best offline matching from R to S. (This minimum cost
bipartite perfect matching problem can be easily solved offline.)

The online problem was independently introduced in the early 1990’s by Kalyanasundaram and
Pruhs [KP93], and by Khuller, Mitchell, and Vazirani [KMV94]. Both papers gave deterministic
∗Department of Computer Science, Carnegie Mellon University, Pittsburgh PA 15213.
†Stanford University. Work done when at the Department of Computer Science, Carnegie Mellon University, Pitts-

burgh PA 15213.

1

2k−1-competitive algorithms, which is the best possible upper bound on the competitive ratio even
when the metric is a star with k leaves with the servers at the leaves. For the star example, any ran-
domized algorithm must be Ω(Hk)-competitive, and a randomized greedy algorithm based on the
airplane seat problem is indeedO(Hk)-competitive, whereHk is the kth harmonic number. Indeed,
one can conjecture that O(log k) is the right answer, but this still remains open. In 2006, Meyerson
et al. [MNP06] showed that the randomized greedy algorithm, which assigns to a uniformly ran-
dom closest server, is O(log k)-competitive when the metric is a α-hierarchically well-separated
tree (α-HST) with suitably large separation α between levels, namely with α = Ω(log k). This
implies anO(log3 k)-competitive randomized algorithm for general metrics using randomized em-
beddings into HSTs [FRT03]. Subsequently, Bansal et al. [BBGN07] gave a different algorithm
which is O(log k)-competitive on 2-HSTs, resulting in a O(log2 k) competitive algorithm on gen-
eral metrics. It remains an interesting problem to close the gap between O(log2 k) and Ω(log k)
for general metrics.

The gap is even more egregious when we consider natural special classes of metrics such as the line,
or “low-dimensional” doubling metrics. For points on the line, the best deterministic lower bound
is only 9.001 [FHK05] (with the randomized lower bound being even weaker), and no algorithms
better than those that apply to general metrics are known for the line or for doubling metrics, both
in the deterministic and randomized settings.

1.1 Our Results

In this paper, we make progress on randomized algorithms for restricted classes of metrics. In
particular, we show O(log k)-competitive randomized algorithms for the online metric matching
problem on the line metric and on doubling metrics.

Our first algorithm HST-greedy is a simple algorithm for the line metric. It picks a random distance-
preserving binary 2-HST T , and then for each request, it looks at the set of available servers that are
closest in the tree and maps the request to the server which is closest along the line. Consequently,
it uses both the line and tree distances for the assignment. (One can also consider the request as
randomly choosing between the servers closest on its left and right on the line, but the randomness
is based on the structure tree, and hence is biased and dependent on previous assignments.)

Theorem 1.1 The randomized algorithm HST-greedy isO(log k)-competitive for metric matching
on the line.

The analysis is somewhat unusual: for a fixed binary HST, it shows that the total cost of the online
algorithm when measured along the line is bounded by a constant times the optimal matching’s
total cost—but now, the optimal matching’s cost is measured along this fixed HST. Theorem 1.1
now follows, since by picking a random HST embedding, the latter quantity is O(log k) times the
optimal matching’s cost on the line, in expectation.

We then move to our second algorithm Random-Subtree, which generalizes to the broader class of
doubling metrics. It is even simpler—for the line metric, it just randomly embeds the line into a
2-HST, and then runs a certain randomized greedy algorithm on this new instance. At first glance,
using a 2-HST seems bad, since Meyerson et al. gave examples showing that their randomized
greedy algorithm requires a large separation α in the HST. However, we show we can avoid the
lower bound by (a) using the fact that the bad examples require large degrees, whereas HSTs

2

http://www.cut-the-knot.org/Probability/LostPass.shtml

obtained from the line and doubling metrics have small degree, and (b) altering the randomized
greedy algorithm slightly (in a way we will soon describe). At a high level, we show that if a
metric can be embedded into an α-HST where each vertex has at most ∆ children, our randomized
algorithm is O(H∆/ε)-competitive on such an HST, as long as α ≥ (1 + ε)H∆. (See Theorem 4.1
for a precise statement.) Since all doubling metrics admit such embeddings, this gives us the
following result.

Theorem 1.2 The randomized algorithm Random-Subtree isO(log k)-competitive for metric match-
ing on doubling metrics, and hence also for the line.

To get an idea of how we get this improvement in competitive ratio, we need to understand how our
randomized greedy algorithm Random-Subtree differs from that of [MNP06]. Instead of picking
a uniformly random one of the available servers closest to the request in the HST as they do, we
imagine the following procedure, starting off at the lowest ancestor of the request that contains
an available server. Our algorithm repeatedly moves us to a uniformly random subtree of this
node that has an available server until we reach a leaf/server. Note that our process biases towards
available servers in subtrees with few available servers, and hence results in such subtrees being
empty earlier, which in turn results in fewer choices higher up in the tree for future requests. This
property improves upon of the algorithm presented in [MNP06] (which biases towards subtrees
with more available servers) and hence is crucially used in our analysis; indeed, our potential
function refines the one used in [MNP06] precisely in that it utilizes this very property.

Finally, we consider the following algorithm Harmonic: letting sL and sR be the closest available
left and right servers to the current request r, assign r to sL with probability

1/d(r,sL)
1/d(r,sL)+1/d(r,sR) = d(r,sR)

d(sL,sR) ,

and assign r to sR with the remaining probability.

Theorem 1.3 The Harmonic algorithm is O(log ∆)-competitive.

The rest of the paper follows this outline: we present some notation and preliminaries in Section 2.
The HST-greedy algorithm is presented and analyzed in Section 3, the Random-Subtree algorithm
in Section 4, and the Harmonic algorithm in Section 5. Useful examples are given in Section A.

1.2 Other Related Work

A survey of initial work on the online metric matching problem can be found in [KP98, Sec-
tion 2.2], along with several conjectures about the problem. The paper gave a lower bound of 9
for deterministic algorithms via a reduction from the so-called cow-path problem; they conjec-
tured this was tight, but this was disproved in [FHK05]. [KP98] also conjectured that the work
function algorithm (see, e.g., [KP95]) obtains a constant competitive ratio on the line for the on-
line metric matching problem. This conjecture was also disproved, this time by Koutsoupias and
Nanavati [KN03], who showed an Ω(log k) lower bound (and an O(k) upper bound) for the work
function algorithm. To the best of our knowledge, there is no algorithm known that is currently
conjectured to be O(1), in either the randomized or the deterministic cases.

The online maximum matching problem has received much attention in recent years due to its con-
nections with ad-auctions. There, the naı̈ve greedy algorithm is 2-competitive, and the randomized
algorithm of Karp, Vazirani and Vazirani is e/(e− 1)-competitive; both can be shown to be tight.

3

2 Notation and Preliminaries

An instance of the problem is given by a metric (V, d) with servers at S ⊆ V , where |S| = k.
As mentioned in [MNP06], we can assume that all requests also arrive at vertices in S (with only
a constant factor loss in the competitive ratio). Hence, in the rest of the paper, we assume that
S = V , and hence |V | = |S| = k. Moreover, we assume there is only one server at each node, as
this is only for ease of exposition and the algorithms easily extend to multiple servers at nodes.

An α-HST (Hierarchically well-Separated Tree) is defined as a rooted tree where all edges at depth
i have weight c/αi for some fixed constant c. Here, the edges at depth 0 are those incident to
the root, etc. An HST is ∆-ary if each node has at most ∆ children. For the case of the line,
we assume that the aspect ratio of the points containing the servers (which, recall, is defined as
maxx,y∈S d(x,y)
minx,y∈S d(x,y)) is O(k3); in Appendix B.1, we show this is without loss of generality. This allows
us to embed these points into distributions of dominating binary 2-HSTs with expected stretch
O(log k). Furthermore, for HSTs that are constructed from the line, we refer to the width of a
tree as the maximum line-distance between any two points within the tree. For doubling metrics
we cannot make such a general assumption on the aspect ratio; however, by suitably guessing the
value of Opt and running the HST construction algorithms only for the top O(log k) levels, one
can still give a reduction to the problem on bounded-degree HSTs with only an O(log k)-expected
loss. (Details in Appendix B.1.)

For a node a of a tree, let T (a) represent the subtree rooted at a. Also, define the level of a to be the
length of the maximum path from a to a leaf of T (a). When referring to servers to be assigned by
requests, we will refer to servers that have not yet been assigned to as available, free, or unassigned.
We will use Opt to denote both the optimum matching as well as its cost.

3 An O(log k) Algorithm for the Line
In this section, we give the details of our first algorithm HST-greedy. Recall that this algorithm first
picks a random binary 2-HST T that stretches distances in the line by O(log k) in expectation. It
now assigns this request to either the closest free server sl to its left on the line or the closest free
server sr on its right, whichever is closer in the random HST T . (Since we are dealing with binary
HSTs, there will be no ties.)

Given a sequence of requests σ = r1, r2, . . . , rk appearing online, we can say that the HST-greedy
algorithm matches each request ri to a distinct server gσ(ri) as follows: for the request ri, let
ai denote the lowest ancestor of ri in the binary HST such that the subtree T (ai) (rooted at ai)
contains a free server. Assign ri to the free server in T (ai) that is closest to ri along the line; this
server is called gσ(ri). If we denote by dL the metric for the line and by dT the metric for the HST,
the main theorem of this section is the following:

Theorem 3.1 For any choice of the binary 2-HST T and any request sequence σ = r1, r2, . . . , rk,
the HST-greedy algorithm outputs a matching gσ such that for any matching fσ,

k∑
i=1

dL(ri, gσ(ri)) ≤ O(1) ·
k∑
i=1

dT (ri, fσ(ri)),

4

If we then consider fσ to be the optimal matching for the line and pick T with expected stretch
O(log k), we get that E[

∑k
i=1 dT (ri, fσ(ri))] ≤ O(log k) ·∑k

i=1 dL(ri, fσ(ri)) = O(log k) ·Opt,
which proves Theorem 1.1.

3.1 Analysis via a “Hybrid” Algorithm

To prove Theorem 3.1, fix the binary 2-HST T , and denote the matching produced by the HST-greedy
algorithm (the algorithm which we denote by G) on a request sequence σ by gσ. Now consider a
“hybrid” algorithm (denoted by H) that matches the request r1 to an arbitrary server s1, and then
runs the HST-greedy algorithm, G, on the remaining requests in σ. Let the matching produced by
H be called hσ; this matching depends on the choice of s1.

Lemma 3.2 (Hybrid Lemma) There is a universal constant λ such that for any fixed binary 2-
HST T , any set of servers S on the line, for any request sequence σ = r1, . . . , rk, and for any
choice of assignment r1 → s1,

k∑
i=1

dL(ri, gσ(ri)) ≤
k∑
i=1

dL(ri, hσ(ri)) + λ dT (r1, s1),

Note that if gσ were the optimal matching on the line, so that hσ matches r1 → s1 arbitrarily and
then finds the optimal matching on the remaining requests, one can easily prove such a claim with
the additive term being 2dL(r1, s1). We will show that even using the HST-greedy algorithm’s
matching as gσ satisfies such a property with additive error λ dT (r1, s1).

Before we prove this lemma, let’s use it to prove Theorem 3.1. Given any request sequence σ
and matching fσ, we can define a sequence of hybrid matchings {htσ}kt=0, where htσ is obtained
by matching the first t requests r1, . . . , rt in σ to fσ(r1), . . . , fσ(rt) and the remaining requests
rt+1, . . . , rk to gσ(rt+1), . . . , gσ(rk). Note that h0

σ is just the HST-greedy matching gσ, and hkσ
produces the matching fσ. Moreover, by ignoring the servers in {fσ(ri) | i ≤ t} and just consid-
ering rt+1, . . . , rk as the request sequence, Lemma 3.2 implies∑k

i=t+1 dL(ri, h
t
σ(ri)) ≤

∑k
i=t+1 dL(ri, h

t+1
σ (ri)) + λ · dT (rt, fσ(rt)),

since we can regard the assignment rt → fσ(rt) as the arbitrary assignment r1 → s1 used in the
lemma. Now, by adding

∑t
i=1 dL(ri, fσ(ri)) to both sides,∑k

i=1 dL(ri, h
t
σ(ri)) ≤

∑k
i=1 dL(ri, h

t+1
σ (ri)) + λ · dT (rt, fσ(rt)).

Summing this over all values of t, and using that h0
σ = gσ and hkσ = fσ, we get∑k

i=1 dL(ri, gσ(ri)) ≤
∑k

i=1 dL(ri, fσ(ri)) + λ ·∑k
i=1 dT (rt, fσ(rt)).

Finally, since for all pairs of points x, y on the line, dL(x, y) ≤ dT (x, y), we get
∑k

i=1 dL(ri, gσ(ri)) ≤
(λ+ 1) ·∑k

i=1 dT (rt, fσ(rt)), which proves Theorem 3.1.

5

3.2 Proof of the Hybrid Lemma

We now prove Lemma 3.2. Here is the high-level idea: in the hybrid algorithm (which we call H)
we assign r1 → s1 and then run HST-greedy. Now if the (unmodified) HST-greedy algorithm G
assigns r1 → x1, then we can imagineG as having an “excess” free server at s1 (i.e., this is a server
available in G but not in H), whereas H has an “excess” free server at x1 (which is not available
in G). Now, as future requests arrive, the locations of the current excess servers in G and H move
around until for some request both algorithms assign to their current excess servers—and from
then on, both algorithms behave identically. Our proof shows that (a) the cost difference between
the two algorithms is at most the sum of the distances between consecutive positions of the excess
servers, and that (b) this quantity is itself at most O(dT (r1, s1)).

We first make a few simple claims relating the matchings gσ and hσ given any initial set of servers
S and request sequence σ. To start off, note that for any requests ri such that gσ(ri) = hσ(ri), we
can delete the request ri from the sequence σ and delete the server gσ(ri) from S to get another
server set and request sequence with the same behavior; hence we will assume for the rest of the
section that for each ri ∈ σ, gσ(ri) 6= hσ(ri). The next lemma shows that the size of the symmetric
difference between the available servers in the execution of the HST-greedy algorithm G and those
of the hybrid algorithm H stays at exactly two (until it becomes zero). Hence it makes sense to
refer to the unique excess servers in G and H , which we will call G-cavities and H-cavities.

For convenience, we will say that the request rt is assigned at time t, and we refer to the situation
just before this assignment as being at time t−, and the situation just after as time t+; note that
(t−1)+ = t−. Also, define AG(t+) (respectively, AH(t+)) to be the set of servers not yet assigned
by gσ (respectively, hσ) at time t+, immediately after the assignment of request rt.

Lemma 3.3 The following facts hold for AG(t+) and AH(t+).

(1) Either AG(t+) = AH(t+), or |AG(t+) \ AH(t+)| = 1 = |AG(t+) \ AH(t+)|.
(2) If AH(t+) 6= AG(t+), define gt+ and so that AG(t+) \ AH(t+) = {gt+}, and AH(t+) \

AG(t+) = {ht+}. Then,
(a) either gt+ 6= gt− or ht+ 6= ht− .
(b) if gt+ 6= gt− for t > 1, it holds that hσ(rt) = gt+ and gσ(rt) = gt− , and if ht+ 6= ht− ,

we have gσ(rt) = ht+ and hσ(rt) = ht− .

Proof. Suppose gσ(r1) = x1; recall that hσ(r1) = s1. If x1 = s1, then AG(1+) = AH(1+). Now
consider the case where x1 6= s1. Hence, AG(1+)\AH(1+) = {s1}, whereas AH(1+)\AG(1+) =
{x1}. Let us call the former a “G-cavity” and the latter an “H-cavity”. Now, inductively assume
the claim is true at time t−, just before assigning rt. If AG(t−) = AH(t−), then the claim is trivially
true from then on, so assume there is a unique G-cavity gt− and H-cavity ht− . Let hσ(rt) = st
and gσ(rt) = xt. There are some cases to consider:

1. If xt = gt− and st = ht− , then AG(t+) = AH(t+).

2. If xt 6= gt− and st = ht− , then it follows that AH(t+) \ AG(t+) = {xt}, whereas AG(t+) \
AH(t+) = {gt−}—i.e., gt+ = gt− but ht+ = xt, and so rt is such that gσ(rt) = ht+ and
hσ(rt) = ht− .

6

T ∗

r1 r2 a b c r3 d e

Figure 3.1: In this small example, suppose H is the matching {(r1, c), (r2, a), (r3, d)}, and G
initially matches r1 to a. Then, the time is currently at 1+, and g1+ = c, h1+ = a. Suppose G then
assigns r2 to b. Then g2+ = g1+ = c, and h2+ = b. When r3 arrives, G may then assign it to c,
causing g3+ = d and h3+ = h2+ = b.

3. If xt = gt− and st 6= ht− , then it follows that AH(t+) \AG(t+) = {ht−}, whereas AG(t+) \
AH(t+) = {st}—i.e., ht+ = ht− but gt+ = st, and so rt is such that gσ(rt) = gt− and
hσ(rt) = gt+ .

4. Finally, we claim that the case xt 6= gt− and st 6= ht− must imply that xt = st. Indeed,
let that the lowest ancestor considered by HST-greedy when G (respectively, H) makes an
assignment for rt be denoted as aG (respectively, aH) If aG and aH are not identical, say
aG is lower. Then, T (aG) contains a server AG(t−) \ AH(t−), but since the only server in
AG(t−)\AH(t−) is gt− , we would get xt = gt− and a contradiction; a similar analysis shows
that aH cannot be lower. Hence aG = aH = a, say. Note that G and H must consider the
same set of servers to assign to. Now if bothG andH assign rt to its closest free server within
T (a), and neither assignment is with the G-cavity nor the H-cavity, then xt = st. Hence,
gt+ = gt− and ht+ = ht− , and so AG(t+)\AH(t+) = {gt+} and AH(t+)\AG(t+) = {ht+}.

Also, note that if AG(t+) 6= AH(t+) and gt+ 6= gt− , then case 3 is the only possibility, and so
gσ(rt) = gt− and hσ(rt) = gt+ as stated in the claim. Similarly, if AG(t+) 6= AH(t+) and
ht+ 6= ht− , then case 2 is the only possibility, and so gσ(rt) = ht+ and hσ(rt) = ht− . Case 4 does
not change the status of the G-cavity or H-cavity, and case 1 results in AG(t+) = AH(t+), so no
other cases are possible.

Another way to view the above lemma is to consider the symmetric difference gσ∆hσ of the
two matchings and to claim that this is a single path or cycle. We start off with two edges
(r1, s1), (r1, x1); each subsequent time we place down two edges adjacent to rt, and these ex-
tend the path (in cases 2 and 3) until we close a cycle (as in case 1, when both the G-cavity and
H-cavity disappear), at which time the process stops.

As stated in the above lemma, we will use gt+ to represent the unique G-cavity at time t+ and
ht+ the unique H-cavity at time t+. By redefining k appropriately, we will assume that AG(t+) 6=
AH(t+) for all times t < k, with AG(k+) = AH(k+), and hence gt+ and ht+ are defined for all
times t ∈ {1, 2, . . . , k − 1}. We can thus ignore all times t > k since the two algorithms from
then on behave identically. Finally, note that if u ≤ t, then AG(t+) ⊆ AG(u+). Now, to prove

7

the “hybrid lemma”’, Lemma 3.2, we show that the difference in costs can be measured merely in
terms of the distances (according to the line) traveled by the cavities.

Lemma 3.4 (Accounting Lemma)

k∑
t=1

dL(rt, gσ(rt))−
k∑
t=1

dL(rt, hσ(rt)) ≤ 2
k−1∑
t=2

dL(gt− , gt+) + 2
k−1∑
t=2

dL(ht− , ht+) + 2 dT (r1, s1),

i.e., the difference in costs between G and H is at most twice the line distance traveled by the
G-cavities and H-cavities, plus twice the tree distance from r1 → s1.

Proof. First, we consider the cases where t > 1. By the triangle inequality, we get that for any t,

dL(rt, gσ(rt))− dL(rt, hσ(rt)) ≤ dL(gσ(rt), hσ(rt)).

If gσ(rt) = hσ(rt), then dL(rt, gσ(rt))− dL(rt, hσ(rt)) = 0, so we assume that gσ(rt) 6= hσ(rt).
By Lemma 3.3, the three possible cases to consider are when AG(t+) = AH(t+), AG(t+) 6=
AH(t+) and gt+ = gt− , and AG(t+) 6= AH(t+) and ht+ = ht− .

There are three cases. First, if AG(t+) 6= AH(t+). Then, if gt+ 6= gt− , then by Lemma 3.3,
dL(gσ(rt), hσ(rt)) = dL(gt− , gt+). Second: if ht+ 6= ht− , then Lemma 3.3 again gives us that
dL(gσ(rt), hσ(rt)) = dL(ht− , ht+). Third, if AG(t+) = AH(t+), then this must be time t = k
(i.e., the last request), with hσ(rt) = ht− and gσ(rt) = gt− . In this case dL(gσ(rk), hσ(rk)) =
dL(gk− , hk−)—which by the triangle inequality applied to all the previous differences, is at most∑k−1

t=2

(
dL(gt− , gt+)+dL(ht− , ht+)

)
+dL(r1, g1+)+dL(r1, h1+) =

∑k−1
t=2

(
dL(gt− , gt+)+dL(ht− , ht+)

)
+

dL(r1, hσ(r1)) + dL(r1, gσ(r1)).

Now, adding over all times t ∈ {2, . . . , k}, we get that
∑k

t=2 dL(rt, gσ(rt)) − dL(rt, hσ(rt)) is at
most

k∑
t=2

dL(gσ(rt), hσ(rt)) ≤
k−1∑
t=2

2
(
dL(gt− , gt+) + dL(ht− , ht+)

)
+ dL(r1, hσ(r1)) + dL(r1, gσ(r1)).

Finally, adding in dL(r1, gσ(r1))− dL(r1, hσ(r1)) to both sides, and noting that

2dL(r1, gσ(r1)) ≤ 2dT (r1, gσ(r1)) ≤ 2dT (r1, hσ(r1)),

we get

k∑
t=1

dL(rt, gσ(rt))− dL(rt, hσ(rt)) ≤
k−1∑
t=2

2
(
dL(gt− , gt+) + dL(ht− , ht+)

)
+ 2 dT (r1, hσ(r1)),

which completes the proof.

3.2.1 Distance Traveled by the Cavities

Given this “accounting lemma” Lemma 3.4, we now bound the total distance traveled by the cav-
ities. If a∗ is the least common ancestor of r1 and s1 in T , the following lemma shows us that the
cavities must stay within T (a∗), the subtree rooted at a∗.

8

Lemma 3.5 Set a∗ to be the least common ancestor of r1 and s1 in T , and let T (a∗) be the subtree
rooted at a∗. For all times t < k, both gt+ and ht+ lie within T (a∗).

Proof. To begin, g1+ = s1, and hence in T (a∗). Also, h1+ = x1 is chosen by HST-greedy, and
must lie in the lowest subtree containing both r1 and a free server; hence this is a (not necessarily
proper) subtree of T (a∗). To get a contradiction, suppose there is a t < k such that gt− and ht− lie
within T (a∗), but the claim is false at time t+. Since rt assigns to a unique server, it cannot move
both gt+ and ht+ out of T (a∗) at the same time. Suppose gt+ ∈ T (a∗) and ht+ 6∈ T (a∗). Then,
ht+ 6= ht− but gt+ = gt− , and so by Lemma 3.3, gσ(rt) = ht+ and hσ(rt) = ht− . However, gt+
is in AG(t−) and lies within T (a∗), and so G would have preferred to assign rt to gt+ rather than
ht+ , a contradiction. The same holds true if gt+ 6∈ T (a∗) and ht+ ∈ T (a∗).

Henceforth, let us denote the subtree T (a∗) as T ∗. The rest of the proof shows that each of the
cavities travels a total distance of O(2level(a∗)) = O(dT (r1, s1)) which completes the proof. At a
high level, the proof proceeds thus: consider the various locations of the G-cavity over time, and
view this as the cavity moving over time. We show that whenever this motion changes direction,
the level of the least common ancestor of these locations strictly increases, and hence the sum of
the distances traveled behaves like a geometric sum. First, consider some useful definitions to help
formalize this idea:

Definition 3.6 (Direction) We define dirg(t+), the direction of the G-cavity gt+ , to be either L
or R as follows: initially, we say that dirg(1+) := L. For t > 1, if gt+ is located to the left
(respectively, right) of gt− on the line, then dirg(t+) := L (respectively, R), and if gt+ = gt− then
dirg(t+) := dirg(t−). An analogous definition follows for dirh(t+), the direction of the H-cavity
ht+ .

Definition 3.7 Let ag(t+) be the least common ancestor of g1+ , . . . , gt+ , and define Tg(t+) =
T (ag(t+)). Similarly, if ah(t+) is the least common ancestor of h1+ , . . . , ht+ , then Th(t+) =
T (ah(t+)).

We know that for all t, Tg(t+), Th(t+) ⊆ T ∗ (see Lemma 3.5 for a justification). Moreover, there
is the obvious monotonicity property that if u ≤ t, then Tg(u+) ⊆ Tg(t+). We now need more
information on the servers that lie between gt− and gt+ and between ht− and ht+ . Note that any of
the properties proved below for G also hold analogously for H by symmetry.

Lemma 3.8 For t > 1, there are no servers in AG(t+) that lie between gt− and gt+ . Likewise,
there are no servers in AH(t+) that lie between between ht− and ht+ .

Proof. We only deal with AG(t+), since a proof for AH(t+) follows similarly. If gt+ = gt− , then
the claim follows trivially, so assume that this is not the case. Consider the request rt, and note that
by Lemma 3.3, hσ(rt) = gt+ and gσ(rt) = gt− . There are certainly no servers in AG(t+) that lie
between rt and gt− since G chose the closest server in the direction of gt− from rt. Also, we know
that there are no servers in AH(t+) that lie between rt and gt+ , since H chose the closest server in
the direction of gt+ from rt. The only server in AG(t+) that might be between rt and gt+ , then, is
gt− . However, even in this case, there are still no servers in AG(t+) that are between gt− and gt+ .

9

It also follows that the relation described by Lemma 3.8 is transitive, so one can show that for
1 ≤ i < j ≤ k, there are no servers in AG(j+) that lie between gi+ and gj+ (and, no servers in
AH(j+) that lie between hi+ and hj+). We will use this fact in our next proof, which also considers
the “direction” in which gt+ or ht+ is moving (denoted dirg(t+) and dirh(t+)).

Lemma 3.9 If dirg(t+) = L, then there are no servers in AG(t+) to the right of gt+ that are within
Tg(t+), and if dirg(t+) = R, then there are no servers in AG(t+) to the left of gt+ that are within
Tg(t+). Similarly, if dirh(t+) = L, then there are no servers in AH(t+) to the right of ht+ that are
within Th(t+), and if dirh(t+) = R, then there are no servers in AH(t+) to the left of ht+ that are
within Th(t+).

Proof. We will show the case for when dirg(t+) = L, since the proof for when dirg(t+) = R is
essentially the same. Assume for the sake of contradiction that there exists some server s ∈ AG(t+)
to the right of gt+ within Tg(t+). First, under these assumptions, we claim that for i < t, every
gi+ must lie to the left of s and to the right of gt+ . To show the former claim holds, suppose some
gv+ was such that s was to the left of it—then, s lies between gv+ and gt+ , yet s ∈ AG(t+), a
contradiction. For the latter claim, note that gt− must be to the right of gt+ , since dirg(t+) = L. If
there were some maximal v such that gv+ lies to the left of gt+ , then gt+ 6∈ AG(t−), a contradiction.

Let the left and right child subtrees of Tg(t+) be called T1 and T2, respectively. One can show that
gt+ must lie within T1 and s lies within T2 using the previous fact and the definition of Tg(t+).
Now, let u ∈ [2, t] be the largest integer such that gu− is in T2. Note that such a u must exist, since
if every G-cavity was within T1, then Tg(t+) would be equal to T1, which cannot be the case.

Now, by Lemma 3.3, ru+1 is such that gσ(ru+1) = gu− and hσ(ru+1) = gu+ . Note that by the
maximality assumption of u and the fact that gt+ is in T1, gu+ cannot lie in T2. If ru+1 lies within
T2 or to the right of s, then H would have assigned ru+1 to s rather than gu+ , a contradiction.
Otherwise, if ru+1 lies within T1 or to the left of T1, then G would have assigned ru+1 to gu+

rather than gu− , which is another contradiction. Since both cases lead to the desired contradiction,
we can conclude that no such s ∈ AG(t+) can exist, which proves the claim. An analogous proof
can be made for AH(t+).

The following lemma can then be established from the previous result:

Lemma 3.10 Suppose dirg(t−) 6= dirg(t+). Then the level of the tree Tg(t+) is strictly greater
than the level of Tg(t−). Similarly, if dirh(t−) 6= dirh(t+), then the level of the tree Th(t+) is
strictly greater than the level of Th(t−).

Proof. If dirg(t−) = L, then there are no servers in AG(t−) within Tg(t−) to the right of gt− .
But since gt+ is to the right of gt− , and gt+ was a server in AG(t−), it must be the case that
gt+ 6∈ Tg(t−). Thus, Tg(t−) does not include gt+ , yet Tg(t+) must include gt+ , and so the level of
Tg(t+) is greater than the level of Tg(t−). A similar proof can be used to show that the same result
holds for dirg(t−) = R, and an analogous result also holds for Th(t+).

Finally, we can show that the distance traveled by the cavities is at most on the order of the tree-
distance of the initial assignment r1 → s1.

Lemma 3.11 For the binary α-HST, the total distance traveled by either the G-cavities or H-
cavities is at most O(dT (r1, s1)).

10

Proof. As t increases, Tg(t+) may change, and define ρt such that T (ρt) = Tg(t+); note that
level(ρt) is non-decreasing. Moreover, as long as the scope stays fixed at some subtree T (ρt),
the G-cavity gt+ cannot change direction, and hence the total distance it travels is at most the
width of T (ρt), which is O(αlevel(ρt)). Finally, each of the ρi’s is a descendent of a∗, the root of
T ∗. Hence the total distance traveled by the G-cavity is at most 1 + α + α2 + . . . + αlevel(a∗),
which is O(αlevel(a∗)) = O(dT (r1, s1)). A similar argument holds for the distances traveled by the
H-cavities.

Plugging Lemma 3.11 into the “accounting lemma” (Lemma 3.4), we get

k∑
t=1

dL(rt, gσ(rt))−
k∑
t=1

dL(rt, hσ(rt)) ≤ O(dT (r1, s1)) + 2 dT (r1, s1).

Note that dT (r1, s1) ≥ dL(r1, s1), and hence the expression on the right is at most λ dT (r1, s1)
for some λ = O(1). This completes the proof of Lemma 3.2 (the “hybrid lemma”) and hence the
proofs for Theorem 3.1 and Theorem 1.1. Although in this section we only covered ∆-ary HSTs
with ∆ = 2, a generalization of HST-greedy can be shown to be O(∆2) times the tree-cost of the
optimal matching on any ∆-ary HST (as opposed to the O(1) factor we show in our analysis), and
hence still O(log k)-competitive on the line if ∆ is regarded as a small constant.

4 The Random-Subtree Algorithm

We now turn to showing that a different randomized algorithm gives an O(log k) competitive ratio
for the line; the proof generalizes to doubling metrics too. To start off, we use the fact that binary
2-HSTs approximate the line metric with O(log k) expected stretch. It is not difficult to show that
the (deterministic) greedy algorithm on a binary 2-HST is O(log k)-competitive compared to the
optimal solution on the tree, which implies an O(log2 k)-competitive ratio in all. In this section,
we show that randomization helps: a certain randomized greedy algorithm is O(1)-competitive on
the binary 2-HST, giving us a different O(log k)-competitive algorithm for the line. In fact, the
proof extends to HSTs obtained from doubling metrics, and hence proves Theorem 1.2.

4.1 The Algorithm

Let us define the algorithm Random-Subtree for online metric matching on an arbitrary HST as
follows: when a request r comes in, consider its lowest ancestor node a whose subtree T (a) also
contains a free server. Now we choose a random free server in the subtree rooted at a as follows:
from among those of a’s children whose subtrees contain a free server under them, we choose
such a child of a uniformly at random, and repeat this process until we reach a leaf/server s—we
then map r to server s. Observe that ours is a different randomized greedy algorithm from that
in [MNP06], which would have chosen a server uniformly at random from among all the servers
under a. Our main theorem is the following.

Theorem 4.1 The algorithm Random-Subtree is 2(1 + 1/ε)H∆-competitive on ∆-ary α-HSTs, as
long as α ≥ max((1 + ε)H∆, 2).

Since the line embeds into binary 2-HSTs with expected stretch O(log k), we get an O(log k)-
competitive randomized algorithm for the line. Moreover, in Appendix B.2, we show that an

11

algorithm for ∆-ary α-HSTs satisfying the property above (with ∆ = O(1)) implies an algorithm
for doubling metrics with an additional loss of O(log k); this proves Theorem 1.2.

The proof of the theorem goes thus: we first just consider the edges incident to the root (which
we call root-edges) of an ∆-ary α-HST, and count the number of times these edges are used.
Specifically, we show that for any sequence of requests, the number of requests that use the root-
edges in our algorithm is at most H∆ times the minimum number of requests that must use these
root-edges. This “root-edges lemma” is the technical heart of our analysis; getting H∆ instead of
Hk (obtained in [MNP06]) requires defining the right potential function, and carefully accounting
for the gain we get from using the Random-Subtree algorithm rather than the randomized greedy
algorithm of [MNP06].

Having proved the root-edges lemma, notice that for any fixed vertex v in an HST, the subtree
rooted at v is another HST on which we can apply the root-edges lemma to bound the cost incurred
on the edges incident to v. Consequently, applying this for every internal vertex in the HST and
summing up the results shows that the total cost remains at most O(H∆) · Opt, as long as the
parameter α for the HST is larger than H∆.

4.2 The Root-Edges Lemma

Consider a ∆-ary α-HST T with a set of requests R ∪ R′ such that the requests in R originate at
the leaves of T , and those in R′ originate at the root. We assume that the number of servers in T
is at least |R ∪ R′|. Let T1, T2, . . . , T∆ denote the ∆ child subtrees of T . We can assume that T
has exactly ∆ child subtrees without loss of generality because we can create extra subtrees with
no available servers as needed without changing the analysis or behavior of the algorithm. We will
use R(Ti) to denote the set of requests that originate in subtree Ti. Let ni be the number of servers
in Ti, and let M∗ =

∑∆
i=1 max(|R ∩ Ti| − ni, 0).

Fact 4.2 In any assignment of requests in R ∪ R′ to servers, at least M∗ + |R′| requests use
root-edges.

Proof. The number of requests that originate in a subtree Ti is |R ∩ R(Ti)|, so |R ∩ R(Ti)| − ni
represents the number of requests that originate in Ti and must assign to servers outside of Ti, and
hence, must use a root-edge. If this quantity is negative, we then use 0 as the lower bound for
Ti. Thus, the sum of this quantity over all subtrees is therefore a lower bound on the number of
requests that use root-edges.

Now, let the random variable M count the number of requests in R∪R′ that use a root-edge when
assigned by the algorithm Random-Subtree.

Lemma 4.3 (Root-Edges Lemma)

E[M] ≤ H∆ · (M∗ + |R′|).

Proof. Let the k requests R ∪ R′ be labeled r1, r2, . . . , rk, where r1 is the earliest request and rk
is the latest request. The request rt is assigned at time t, and we refer to the situation just before
this assignment as being at time t−, and the situation just after as time t+. Note that t− for t = 1
(denoted as 1−) represents the time before any request assignments have been made, and t+ for
t = k (denoted as k+) represents the time after all request assignments have been made. Let

12

Rt = {rt, rt+1, . . . , rk}, the set of requests at time t− that have yet to arrive. At time t−, let ni,t
be the number of available servers in tree Ti. A subtree Ti is said to be open at time t− if ni,t > 0
(there are available servers at time t− in Ti). Let ηt be the number of open subtrees of T at time t−.

Define the first min(ni,t, |Rt∩R(Ti)|) requests of Ti to be the local requests of Ti at time t− (these
are the ones in R(Ti) that have the lowest numbered indices), and the remaining requests in Ti to
be the global requests of Ti at time t−.1 Let Li,t and Gi,t be the set of local and global requests
in Ti at time t−, and let Lt := ∪iLi,t and Gt := ∪iGi,t. For convenience, we say that a request
rj becomes global at time t if rj is local at time t−, but rj is global at time t+. Let requests in
Rt := Rt ∩R′ be called root requests of T at time t−.

As a sanity check, note that at the beginning (at time 1−), the set of pending requests R1 = R∪R′,
the number of pending requests in subtree Ti is ni,1 = ni, the number of global requests in Ti is
|Gi,1| = max(|R ∩ R(Ti)| − ni, 0) (so the total number of global requests at time 1− is M∗), and
the number of root requests is |R1| = |R′|.
Recall that global requests of Ti must assign to servers outside of Ti: while an optimal offline
algorithm can identify where to assign these global requests, an online algorithm may assign a
global request from Ti to some subtree Tj that only has as many servers as future requests, which
causes some local request in Tj to become global. Hence we want to upper-bound the number of
future requests in Rt+1 that become global due to our assignment for rt. We associate with each
request in Rt a “cost” at time t− which represents this upper bound. Later, we will use the cost
function to define the potential function. The cost function at time t− is Ft : Rt → Z≥0; we say it
is well-formed if it satisfies two properties:

• Ft(rj) = 0 if and only if rj ∈ Lt (i.e., it is a local request at time t−), and

• for all global and root requests rj ∈ Gt∪Rt, Ft(rj) is an upper bound on the random variable
ηj , the number of open subtrees at time j−.

Constructing the Well-Formed Cost Functions. We set F1(rj) = ∆ (the degree of the tree)
for all rj ∈ G1 ∪ R1 (global and root requests at time 1−), and F1(rj) = 0 for all rj ∈ L1 (local
requests at time 1−). It is immediate that the map F1 is well-formed.

Now at each time t+, we will define the next function Ft+1 using Ft. For this, first consider time
t−, and suppose that the map Ft is well-formed. The easy case first: If rt ∈ Lt, then define
Ft+1(r) = Ft(r) for all r ∈ Rt. In this case if a request in Rt is a local/global/root request at time
t−, it remains a local/global/root request at time t+, so Ft+1 is still well-formed.

On the other hand, suppose rt ∈ Gt ∪Rt, i.e., it is a global or root request. Recall there are ηt open
subtrees at time t−. Each open subtree Ti contains |Rt ∩ R(Ti)| requests and ni,t free servers, so
if |Rt ∩ R(Ti)| ≥ ni,t then assigning rt to a server in this subtree would cause some request rj
in Rt ∩ R(Ti) to become global at time t (because ni,t+1 would become ni,t − 1). In this case,
define at(Ti) := j, the index of the request rj that turns global in subtree Ti. Else, if no request in
Rt ∩ R(Ti) would become global, set at(Ti) := k + i (which cannot be the index of any request,

1The idea behind calling requests local/global is this: assuming no servers in Ti are used up by requests from other
subtrees, the local servers will be assigned within Ti by our algorithm, whereas the global ones will be assigned to other
subtrees (and hence use a root-edge). Of course, as servers within Ti are used by requests in other subtrees, some local
requests become global.

13

since there are only k requests). Let At = {at(Ti) | Ti open at time t−}; note that |At| = ηt.
Now denote the elements of At by {pj}ηtj=1 such that p1 < p2 < · · · < pηt . Note that each pj
corresponds

(Another sanity check: we claim that the last entry pηt > k; indeed, if rt is a global or root request,
there must be some open subtree Ti which has more available servers than requests.) Now, let Ti
be the subtree that rt assigns to, chosen by picking out of the open subtrees uniformly at random.
We now define the map Ft+1 at time t+. There are two cases to consider:

• If at(Ti) > k (i.e., none of the requests in R(Ti)∩Rt+1 become global due to assigning rt),
then we set Ft+1(r) = Ft(r) for all requests r ∈ Rt+1.

• If at(Ti) ≤ k, then say at(Ti) = pηt−q+1 in the ordering given above (i.e., at(Ti) was the
qth largest value in At). Now assign Ft+1(r) = Ft(r) for all r ∈ Rt+1 \ {rat(Ti)}, and
Ft+1(rat(Ti)) = q − 1.

Lemma 4.4 The map Ft+1 is well-formed.

Proof. By induction, the map Ft was well-formed. In the first case when rt is local, the claim
follows since the sets of local/global/root requests in Rt+1 remain unchanged and ηt+1 ≤ ηt.
Suppose now that rt is a global or root request that is assigned into Ti. If none of the requests
in R(Ti) become global due to this change, the well-formedness of Ft+1 follows again. So, let’s
consider the case where the request rj ∈ R(Ti) becomes global because of rt. We previously
defined that j = at(Ti), and that j is the qth largest of the sequence of At. Moreover, since rj is
mapped by Ft+1 to an integer q ≤ k, it suffices to show that at most q − 1 subtrees will be open
at time j−. Indeed, we claim that for any subtree Th with at(Th) < at(Ti) = j, there will be no
servers available in Th at time j−. To see this, note that since at(Th) < k, there must be some
request that becomes global if rt assigns in Th. Thus, the number of requests in Th that had indices
smaller than j (and hence arrive before rj) was at least nh,t, the number of available servers in Th
at time t−. Hence, these requests alone would cause Th to be closed. Moreover, for subtree Ti,
the fact that rj becomes global at time t means that Ti will also be closed at time j−. Hence, the
only open subtrees at time j− would be the subtrees T` which were open at time t−, which were
such that at(T`) > j. There are at most q − 1 of such subtrees T`, since j is the qth largest of the
sequence. This shows that Ft+1 is well-formed.

Note that maps Ft and Ft+1 are either the same or differ on at most one request rj that becomes
global at time t, in which case Ft+1(rj) becomes positive. Moreover, Ft′(rj) = Ft+1(rj) for all
times t′ ∈ [t+ 1, j].

The Potential Function Analysis. We are now in a position to define the potential function,

Φt =
∑

r∈Rt
HFt(r), (4.1)

where we consider H0 = 0. Also, define ρt to be the number of requests that our algorithm has
already matched outside of their subtrees at time t−. The proof of the root-edges lemma will then
follow immediately from the following claim proved using induction.

Lemma 4.5 For all t ∈ [1, k + 1], E[Φt + ρt] ≤ H∆ · (M∗ + |R′|).

14

Proof. We prove this by induction on time t−. The base case is for 1−. Then, ρ1 = 0, the number
of global/root requests is M∗ + |R′|, and since each such request r has F1(r) = ∆, we get that
Φ1 = H∆ · (M∗ + |R′|).

Inductively assume the claim is true at time t−. Thus, E[Φt +ρt] ≤ H∆ · (M∗+ |R′|). We want to
show the same at time t+, right after rt has been assigned. We claim thatE[Φt+1+ρt+1] ≤ Φt+ρt,
which will complete the proof. There are two cases to consider:

• Suppose rt is a local request. Its subtree contains an unassigned server, so ρt+1 = ρt.
Moreover, Ft(rt) = 0 since Ft is well-formed, so Φt+1 = Φt.

• Suppose rt is a global request and gets assigned to subtree Ti. In this case, ρt+1 = ρt + 1.
Now consider E[Φt − Φt+1], which is

HFt(rt) − 1
Ft(rt)

∑Ft(rt)−1
j=0 Hj ≥ HFt(rt) − 1

ηt

∑ηt−1
j=0 Hj = 1

since Ft(rt) ≥ ηt by the well-formedness of map Ft.

Hence, in both cases, conditioned on all assignments made before time t−, the value E[Φt+1 +
ρt+1] ≤ Φt + ρt, where the expectation is taken over the random choices of rt. This completes the
induction, and the proof of the lemma.

Since ρk+1 = M and Φk+1 = 0, using Lemma 4.5 with t = k + 1 finishes the proof of the
root-edges lemma.

4.3 Bounding the Total Cost

In the previous section, we proved the root-edges lemma, which compared the number of times
edges incident to the root of the HST were used by the algorithm to that of the optimal matching,
for any set of requests. We now apply this lemma at each subtree of the original HST to get the
following claim.

Lemma 4.6 Consider a ∆-ary α-HST T , any set R of requests at the leaves of T , and requests
R′ at the root of T , such that |R ∪ R′| is at most the number of servers in T . If Alg(R ∪ R′, T)
denotes the cost of Random-Subtree on requests R ∪R′ on tree T , and Opt(R ∪R′, T) the cost of
the optimal solution, we have

E[Alg(R ∪R′, T)] ≤ c ·H∆ · Opt(R ∪R′, T)

for c = 2(1 + 1/ε) as long as α ≥ max{2, (1 + ε)H∆}.

Proof. We prove this by induction on the depth of the HST. The base case is when the HST is
a star—by scaling, we can assume it has unit edge lengths. In this case we can directly apply
Lemma 4.3 (the root-edges lemma). Recall that we defined M to be the number of requests in
R ∪ R′ that use root edges in our algorithm’s matching and M∗ to be the number of requests in
R that use root-edges in the optimal matching. Now our algorithm incurs a cost of at most 2M ,
whereas Opt(R ∪R′, T) = |R′|+ 2M∗ ≥ |R′|+M∗. By the root-edges lemma, we get

E[Alg(R ∪R′, T)] ≤ E[2M] ≤ 2H∆ · Opt(R ∪R′, T) ≤ cH∆ · Opt(R ∪R′, T).

15

r1 r2 r3

r4
r5

Ti

Figure 4.2: If the dotted lines represent the assignments that Opt makes within Ti, then Λ∗i =
{r1, r3}, Γ∗i = {r2}, and the set R′ of Ti is {r4, r5}.

For the inductive step, we prove the claim for an α-HST T assuming it inductively holds for all the
α-HSTs Ti that are the subtrees of the root. Let the length of the root-edges be 1, the length of their
children edges be 1/α, etc. If we define the length of any root-leaf path in T to be (1 + β), then
we get β ≤ 1

α−1 . Let ni be the number of servers in subtree Ti of T .

Consider the optimal matching Opt, and define the following quantities:

• Let Γ∗i be the requests originating in Ti that Opt matches outside Ti (call these the Opt-global
clients), and let M∗i = |Γ∗i |.

• Let Λ∗i be the requests originating in Ti that Opt satisfies with servers in Ti (these are the
Opt-local clients).

• Let Ri = Λ∗i ∪ Γ∗i be all the requests originating in Ti, and note that R = ∪iRi.

Fact 4.7 (Optimal Cost)

Opt(R ∪R′, T) =

∆∑
i=1

Opt(Λ∗i , Ti) +

∆∑
i=1

M∗i · 2(1 + β) + |R′| · (1 + β).

Proof. We can partition the set R ∪ R′ into the three types of subsets Λ∗i , Γ∗i , and R′. For each
request r in Λ∗i we note that the optimal cost of assigning r is determined by Opt(Λ∗i , Ti), since r’s
server must be in Ti. For every request in Γ∗i , we must assign from some subtree Ti to Tj by using
a root-edge. Thus, we simply pay twice the length from the root to a leaf for each request in Γ∗i ,
which can be expressed as 2(1 + β)M∗i for each subtree Ti. Finally, the requests that begin at the

16

root (of which there are |R′| many) will pay the length of the root to a leaf, which is exactly 1 + β.

Now, let Mi be the set of requests originating outside Ti (but possibly at the root of Ti) that the
algorithm satisfies by assigning into Ti. Look atRi∪Mi—these are all the requests that the subtree
Ti encounters, and let Xi be the first ni of these requests, those which can be satisfied within the
subtree Ti. Define R̂i = Xi ∩ Ri and M̂i = Xi ∩Mi. (Note that the sets Mi, Xi, R̂i, and M̂i are
all random variables.)

Fact 4.8

E[Alg(R ∪R′, T)] =
∆∑
i=1

E[Alg(R̂i ∪ M̂i, Ti)] +
∆∑
i=1

E[|Mi|] · (2 + β).

Proof. Suppose r is some request in Ti that Alg assigned to some server in Tj 6= Ti. We account
for this assignment’s cost by breaking the path from r to s into two parts. The initial part, accounted
for by the latter term of the equation, includes the edges used from r to the root along with both
edges incident to the root. The path from r to the root is of length β + 1, and the additional root-
edge is of length 1, giving us β + 2. Since there are |Mi| such requests for each subtree Ti, we see
that the second term covers all of the initial parts of the paths of each global request.

The reason for the above convention is that now that we have covered all outgoing requests, we can
imagine all global incoming requests as having originated at the root of the tree, since their inital
parts have already been accounted for. Therefore, this quantity can be described as Alg(R̂i∪M̂i, Ti)
for each subtree Ti.

By our inductive assumption we know that for any R̂i and M̂i defined for a tree Ti,

E[Alg(R̂i ∪ M̂i, Ti)] ≤ cH∆ Opt(R̂i ∪ M̂i, Ti). (4.2)

Fact 4.9
Opt(R̂i ∪ M̂i, Ti) ≤ Opt(Λ∗i , Ti) +M∗i · 2β + |Mi| · β.

Proof. To bound Opt’s cost on R̂i ∪ M̂i, we imagine the requests in R̂i ∩ Λ∗i being sent accord-
ing to where Opt(Λ∗i , Ti) sent them, and the remaining requests being assigned arbitrarily to the
remaining servers. The former cost is upper bounded by Opt(Λ∗i , Ti). For the latter term, there are
|R̂i ∩ Γ∗i | ≤ |Γ∗i | = M∗i requests which incur a cost of at most 2β (since they go from some leaf
to another within the fixed subtree Ti), and the remaining requests—at most Mi of them—incur a
cost of at most β (since they go from the root of Ti to a leaf).

Using Facts 4.8 and 4.9 with equation (4.2), we get

E[Alg(R ∪R′, T)] ≤ cH∆

∆∑
i=1

(Opt(Λ∗i , Ti) +M∗i · 2β + E[|Mi|] · β) +

∆∑
i=1

E[|Mi|] · (2 + β).

17

Using Fact 4.7, we can rewrite the above expression as

E[Alg(R ∪R′, T)] ≤ cH∆

(
Opt(R ∪R′, T)−

∆∑
i=1

M∗i · 2(1 + β)− |R′| · (1 + β)

)

+ cH∆

∆∑
i=1

(M∗i · 2β + E[|Mi|] · β) +

∆∑
i=1

E[|Mi|] · (2 + β).

To prove Lemma 4.6, it now suffices to show that all the terms apart from cH∆ Opt(R ∪ R′, T)
sum to something non-positive. In other words, we would like to show that

∆∑
i=1

cH∆

(
M∗i · 2β + E[|Mi|] · β

)
+ E[|Mi|] · (2 + β) ≤

∆∑
i=1

cH∆ (2M∗i + |R′|)(1 + β).

Now we are almost done. We use the root-edges lemma to claim that for each i,

E[|Mi|] ≤ H∆ ·
∆∑
i=1

(
M∗i + |R′|

)
.

Using this, abbreviating M∗ =
∑∆

i=1M
∗
i and r′ = |R′|, and cancelling H∆ throughout, it suffices

to show that

cM∗ 2β + (M∗ + r′)(cH∆β + (2 + β)) ≤ c (2M∗ + r′)(1 + β).

Or equivalently, it suffices to choose c such that

c ≥ (M∗ + r′)(2 + β)

(2M∗ + r′)(1 + β)− 2βM∗ − (M∗ + r′)H∆β

as long as the expression in the denominator is positive. But the expression on the right is

M∗(2/β + 1) + r′(2/β + 1)

M∗(2/β −H∆) + r′(1/β + 1−H∆)
≤ max

(
2/β + 1

2/β −H∆
,

2/β + 1

1/β + 1−H∆

)
.

Consequently, if the larger of 2/β+1
2/β−H∆

and 2/β+1
1/β+1−H∆

is bounded above by c, we will be done.

Now, since α ≥ 2, then 1/β ≥ α − 1 ≥ 1, and (2/β − H∆) ≥ (1/β + 1 − H∆). Thus for our
setting of the parameter α, we get

2/β + 1

2/β −H∆
≤ 2/β + 1

1/β + 1−H∆
,

and we can focus showing the latter is at most c. This just requires some algebra, and is shown in
the next lemma.

Fact 4.10 For 1/β ≥ α− 1, α ≥ (1 + ε)H∆ and c = 2(1 + 1
ε), we have that

2/β + 1

1/β + 1−H∆
≤ c.

18

Proof. Note that
cH∆ ε = 2(1 + ε)H∆.

Now we substitute x = (1 + ε)H∆ to get

c(x−H∆) ≥ 2x− 1 =⇒ c ≥ 2x− 1

x−H∆
.

Observe that f(x) = 2x−1
x−H∆

is a decreasing function for x > H∆. Hence x ≤ α ≤ 1/β + 1 =⇒
f(x) ≥ f(α) ≥ f(1/β + 1). But since c ≥ f(x), this completes the calculation.

This completes the proof of the bound on the expected cost of Random-Subtree.

The lemma above directly proves Theorem 4.1. As an aside, note that 2-HSTs that have large
degree, or binary HST’s that have α ≈ 1 (say α = 1 + 1/ log k), can both simulate star metrics, on
which we have an Ω(log k) lower bound—hence we do need some relationship between α and ∆.
It is an interesting open problem to see if we can obtain constant-competitive algorithms for ∆-ary
α-HSTs where α ≤ H∆.

5 The Harmonic Algorithm for the Line
To prove Theorem 1.3, we first give a lemma which analyzes the expected difference in cost be-
tween running Harmonic on all the requests, and running the optimal algorithm for the first step and
Harmonic thenceforth; using this bound in a hybrid argument proves Theorem 1.3. For a request
sequence σ = r1, . . . , rk, let gσ be the matching obtained by assigning r1, . . . , rk using Harmonic.
Let N(rt) be the set of available neighboring servers to rt—those which are closest to rt on the
left or right and available at time t−. Define hσ to be a matching obtained by first matching r1

to an s1 ∈ N(r1), and then using Harmonic to assign r2, . . . , rk. We will use G to represent the
algorithm that produces gσ and H for hσ.

Lemma 5.1

E[

k∑
i=1

d(ri, gσ(ri))− d(ri, hσ(ri)] ≤ O(log ∆) · d(r1, s1).

In other words, the expected cost of G for any request sequence is at most the expected cost of H
on the same request sequence plus O(log ∆) d(r1, s1)—the difference is proportional to the length
of this forced initial assignment. This allows us to immediately prove Theorem 1.3—let us present
this proof before we commence the proof of Lemma 5.1. We first show the following lemma.

Lemma 5.2 There exists an optimal matching fσ such that fσ(r1) ∈ N(r1).

Proof. Assume to get a contradiction that no such optimal matching exists. Then, let f be an
arbitrary optimal matching; f(r1) is either to the left or right of r1. We handle the case where
f(r1) is to the right, as the other case can be shown via a symmetric argument. Let sR be the
closest available server to the right of r1: by our contradictoin assumption, f(r1) is to the right of
sR. If sR is never taken by a future request, then clearly f cannot be optimal, as its total cost could
be decreased by assigning r1 → sR. Thus, let rt be the request such that f(rt) = sR.

19

Either rt lies to the left, colocated with, or to the right of sR. If rt lies to the left of or is colocated
with sR, then we can construct a matching f ′ where f ′(r1) = sR, f ′(rt) = f(r1), and f ′(ri) =
f(ri) for all other requests. Note that the cost of f ′ and f are the same, which contradicts the
assumption that no such optimal matching exists. If rt lies to the right of sR, then f ′ has a cost
which is less than that of f—another contradiction, since f has optimal cost. Since we have reached
a contradiction in all cases, the lemma follows.

Now, given any request sequence σ and an optimal matching fσ for this sequence such that
fσ(r1) ∈ N(r1), we can define a sequence of hybrid matchings {htσ}kt=0, where htσ is obtained
by matching the first t requests r1, . . . , rt in σ to fσ(r1), . . . , fσ(rt) and the remaining requests
rt+1, . . . , rk to gσ(rt+1), . . . , gσ(rk). Note that h0

σ is just the Harmonic matching gσ, and hkσ pro-
duces the optimal matching fσ. Moreover, by ignoring the servers in {fσ(ri) | i ≤ t} and just
considering rt+1, . . . , rk as the request sequence, Lemma 5.1 implies

E[
∑k

i=t+1 d(ri, h
t
σ(ri))] ≤ E[

∑k
i=t+1 d(ri, h

t+1
σ (ri))] +O(log ∆) · d(rt, fσ(rt)),

since we can regard the assignment rt → fσ(rt) ∈ N(rt) as the assignment r1 → s1 used in
Lemma 5.1. Now, by adding

∑t
i=1 d(ri, fσ(ri)) to both sides,

E[
∑k

i=1 d(ri, h
t
σ(ri))] ≤ E[

∑k
i=1 d(ri, h

t+1
σ (ri))] +O(log ∆) · d(rt, fσ(rt)).

Summing this over all values of t, and using that h0
σ = gσ and hkσ = fσ, we get

E[
∑k

i=1 d(ri, gσ(ri))] ≤ E[
∑k

i=1 d(ri, fσ(ri))] +O(log ∆) ·∑k
i=1 d(ri, fσ(ri)).

The left side is the expected cost of Harmonic, and the right side is the cost of the optimal matching,
which proves Theorem 1.3.

5.1 A Coupling Argument

We now prove Lemma 5.1. Let AG(t) be the set of free servers at time t+ when running algorithm
G, and AH(t) be similarly defined for algorithm H . Note that if at time t+, AG(t) = AH(t), then
the expected difference in costs between algorithms G and H on requests rt+1, . . . , rk is 0. Thus,
we can without loss of generality only consider the time instants where AG(t) 6= AH(t), as this will
not change the expected difference in costs between the two algorithms. Under this assumption,
we have that AG(t) 6= AH(t) for all t that we consider.

Let g1 be the only element of AG(1) \ AH(1) and h1 the only element of AH(1) \ AG(1). As-
sume that g1 is to the left of h1, as the other case is covered by symmetry. We now give a cou-
pling π between the executions of G and H from the two different starting configurations (which
is equivalently a coupling between the evolutions of sets AG(t) and AH(t)). Recall that a valid
coupling should satisfy the property that the marginals should give us a faithful execution of Har-
monic on G and H respectively. In fact we define the coupling π only on pairs of states satisfying
|AG(t) \ AH(t)| = 1 = |AH(t) \ AG(t)|; since we start off with such a pair of initial states, and
since π will ensure that the pair of states resulting from each step of this coupling will continue to
have this property (see Invariant 1 below), this will suffice for our purposes.

Since we only consider pairs of states such that |AG(t) \ AH(t)| = 1 = |AH(t) \ AG(t)| for all t,
let us define gt and ht to be the unique server in the AG(t)\AH(t) and AH(t)\AG(t) respectively,

20

and δt = d(gt, ht) to be the distance between these two servers. In fact, our coupling will also
ensure the property that there are no available servers between gt and ht (see Invariant 2 below).

We now define some notation that will ease the presentation of the remainder of the proof. We say
that r →G s1 and r →H s2 if r assigns to s1 inG and s2 inH . Also, let ∆c(r) = d(r, s1)−d(r, s2).
Furthermore, define the joint distribution π on the assignments made by rt inG andH . We will use
Prπ[E] to denote the probability of an event E occurring under distribution π, and PrG and PrH
the probabilities of the events occurring under algorithm G and H . Let NG(rt) be the available
neighboring servers to rt in G, and similarly for NH(rt). There are four cases to consider: either
request rt appears to the left of both gt and ht with gt ∈ NG(rt), rt appears between gt and ht, rt
appears to the right of both gt and ht with ht ∈ NH(rt), or NG(rt) = NH(rt). We will call these
cases Case 1, 2, 3, and 4, respectively. Also, let En be the event that there exists a time t such that
δt ≥ n. Then, let Qi,n = Prπ[En | Ei].
We can rewrite the expressionE[d(rt, gσ(rt))−d(rt, hσ(rt))] as equivalent to

∑
s∈NG(rt)

d(rt, s) ·
PrG[rt →G s] −∑s∈NH(rt)

d(rt, s) · PrH [rt →H s]. Also, let DiffCost(rt) be the random vari-
able that takes on value d(rt, sG) − d(rt, sH) with probability Prπ[rt →G sG, rt →H sH] for
sG ∈ NG(rt) and sH ∈ NH(rt), so that E[DiffCost(rt)] =

∑
sG∈NG(rt),sH∈NH(rt)

(d(rt, sG) −
d(rt, sH)) · Prπ[rt →G sG, rt →H sH].

For each case we will prove the following invariants, given the inductive assumption that they all
hold prior to the arrival of request rt:

Invariant 1. Either AG(t+1) = AH(t+1), or |AG(t+1)\AH(t+1)| = 1 = |AH(t+1)\AG(t+1)|.

Invariant 2. If AG(t + 1) 6= AH(t + 1), then there are no available servers at time t+ that lie
between gt+1 and ht+1.

For the base case of t = 1, Invariant 1 has already been established, and Invariant 2 holds by the
definition of the neighborhood of r1 since g2, h2 ∈ N(r1). By inductively assuming that Invariants
1 and 2 hold, Cases 1,2,3, and 4 are the only cases encounterable by a request rt. To see this, note
that either none of the two servers in NG(rt)∪NH(rt) is gt or ht (which results in Case 4), or one,
or both of the servers in NG(rt) ∪ NH(rt) is gt and/or ht (which results in Cases 1, 2, or 3). We
will also show that the following claims hold for each of the four cases.

Claim 3. If δt+1 6= 0, then ∆c(rt) ≤ δt+1 − δt. If δt+1 = 0, then ∆c(rt) ≤ δt.

Claim 4. E[d(rt, gσ(rt))− d(rt, hσ(rt))] = E[DiffCost(rt)].

Claim 5. Qi,n = i/n.

5.1.1 Case 1

The first case is when rt to the left of both gt and ht, and gt ∈ NG(rt). Let s1 be the other server
(not gt) in NG(rt), and set w = d(s1, gt), z = d(rt, gt), and x = δt.

21

w

x

z

s1 rt gt ht

Set p = w−z
w and q = w−z

w+x . We define the distribution π for this case, and δt+1 and ∆c(rt) are also
noted for each event:

Event Assignments Prπ δt+1 − δt ∆c(rt)

1 rt →G s1, rt →H s1 1− p 0 0
2 rt →G gt, rt →H s1 p− q w 2z − w
3 rt →G gt, rt →H ht q −x −x

In Event 1, gt+1 = gt and ht+1 = ht, and in Event 2, gt+1 = s1 and ht+1 = ht, so Invariants 1
and 2 are maintained for these events. For Event 3, AG(t+ 1) = AH(t+ 1), so Invariants 1 and 2
are also maintained. One can also see that δt+1 − δt ≥ ∆c(rt) for all three events as well, which
proves Claim 3.

For Claim 4, note that
∑

s∈NG(rt)
d(rt, s) ·PrG[rt →G s]−

∑
s∈NH(rt)

d(rt, s) ·PrH [rt →H s] =
2z(w−z)/w−2(x+z)(w−z)/(w+x) = (w−z)/w ·(2z−w)+(w−z)−(2x+2z)(w−z)/(w+
x) = (−x)(w−z)/(w+x)+(w−z/w−(w−z)/(w+x))(2z−w) = (p−q)(2z−w)+q(−x) =∑

sG∈NG(rt),sH∈NH(rt)
(d(rt, sG)−d(rt, sH)) ·Prπ[rt →G sG, rt →H sH], so Claim 4 also holds.

To prove Claim 5, we will proceed by induction on n− i. When n− i = 0, then clearly Qi,n = 1.
Suppose δt = x, and inductively assume that Qj,n = j/n for all j > x. We have that Qx =
(p−q)Qx+w+(1−p)Qx. This gives usQx = p−q

p Qx+w, and soQx ≤ (1−q/p)(x+w)/n = x/n.

5.1.2 Case 2

The second case is when rt appears between gt and ht. Let s1 6= ht be the other server in NH(rt),
and s2 6= gt the other server in NG(rt), and set w = d(s1, gt), z = d(r, gt), x = δt, and y =
d(ht, s2).

x

z

gt htrt s2s1

w y

Set p = x+y−z
x+y and q = w+z

w+x . We define the distribution π for this case, and δt+1 and ∆c(rt) are
also noted for each event:

Event Assignments Prπ δt+1 − δt ∆c(rt)

1 rt →G s2, rt →H h 1− p y y
2 rt →G g, rt →H h p+ q − 1 −x 2z − x
3 rt →G g, rt →H s1 1− q w −w

22

In Event 1, gt+1 = gt and ht+1 = s2, and in Event 3, gt+1 = s1 and ht+1 = ht, so Invariants 1
and 2 are maintained for these events. For Event 2, AG(t+ 1) = AH(t+ 1), so Invariants 1 and 2
are also maintained. One can also see that δt+1 − δt ≥ ∆c(rt) for all three events as well, which
proves Claim 3.

For Claim 4, note that
∑

s∈NG(rt)
d(rt, s) ·PrG[rt →G s]−

∑
s∈NH(rt)

d(rt, s) ·PrH [rt →H s] =

2z(x + y − z)/(x + y) − 2(x − z)(w + z)/(w + x) = 2z(x+y−z)
x+y − 2(x−z)(w+z)

w+x = (1 − p)y +
(p+ q− 1)(2z−x) + (1− q)(−w) =

∑
sG∈NG(rt),sH∈NH(rt)

(d(rt, sG)− d(rt, sH)) ·Prπ[rt →G

sG, rt →H sH], so Claim 4 also holds.

To prove Claim 5, we will proceed by induction on n− i. When n− i = 0, then clearly Qi,n = 1.
Suppose δt = x, and inductively assume that Qj,n = j/n for all j > x. Qx = (1− p)Qx+y + (1−
q)Qx+w = z

x+y (x+ y)/n+ x−z
x+w (x+ w)/n = x/n.

5.1.3 Case 3

The third case is when rt to the right of both gt and ht, and ht ∈ NH(rt). Let s2 be the other server
(not gt) in NG(rt), and set w = d(s2, ht), z = d(rt, ht), and x = δt.

w

x

z

gt ht rt s2

Set p = w−z
w and q = w−z

x+w . We define the distribution π for this case, and δt+1 and ∆c(rt) are also
noted for each event:

Event Assignments Prπ δt+1 − δt ∆c(rt)

1 rt →G s2, rt →H s2 1− p 0 0
2 rt →G s2, rt →H h p− q w w − 2z
3 rt →G g, rt →H h q −x x

In Event 1, gt+1 = gt and ht+1 = ht, and in Event 2, gt+1 = gt and ht+1 = s2. so Claimss 1
and 2 are maintained for these events. For Event 3, AG(t+ 1) = AH(t+ 1), so Invariants 1 and 2
are also maintained. One can also see that δt+1 − δt ≥ ∆c(rt) for all three events as well, which
proves Claim 3.

For Claim 4, note that
∑

s∈NG(rt)
d(rt, s) ·PrG[rt →G s]−

∑
s∈NH(rt)

d(rt, s) ·PrH [rt →H s] =
2(x+ z)(w− z)/(w+x)− 2z(w− z)/w = (2x+ 2z)(w− z)/(w+x)− (w− z)/w · (2z−w)−
(w − z) = (p − q)(w − 2z) + qx =

∑
sG∈NG(rt),sH∈NH(rt)

(d(rt, sG) − d(rt, sH)) · Prπ[rt →G

sG, rt →H sH], so Claim 4 also holds.

To prove Claim 5, we will proceed by induction on n− i. When n− i = 0, then clearly Qi,n = 1.
Suppose δt = x, and inductively assume that Qj,n = j/n for all j > x. We have that Qx =
(p−q)Qx+w+(1−p)Qx. This gives usQx = p−q

p Qx+w, and soQx ≤ (1−q/p)(x+w)/n = x/n.

23

5.1.4 Case 4

The fourth case is when NG(rt) = NH(rt). Let s1 ∈ NG(rt) be the server on the left and s2 the
server on the right in NG(rt). Let x = d(s1, rt) and y = d(rt, s2).

x

rt s2s1

y

Set p = y
x+y and q = x

x+y . We define the distribution π for this case, and δt+1 and ∆c(rt) are also
noted for each event:

Event Assignments Prπ δt+1 − δt ∆c(rt)

1 rt →G s1, rt →H s1 p 0 0
2 rt →G s2, rt →H s2 q 0 0

In both events, gt+1 = gt and ht+1 = ht, so Invariants 1 and 2 are also maintained. One can also
see that δt+1 − δt ≥ ∆c(rt) for both events as well, which proves Claim 3.

For Claim 4, note that
∑

s∈NG(rt)
d(rt, s) ·PrG[rt →G s]−

∑
s∈NH(rt)

d(rt, s) ·PrH [rt →H s] =
0 =

∑
sG∈NG(rt),sH∈NH(rt)

(d(rt, sG) − d(rt, sH)) · Prπ[rt →G sG, rt →H sH], so Claim 4 also
holds.

Since δt+1 = δt with probability 1 under π, then Qi,n = i/n still holds with the arrival of rt, and
so Claim 5 is trivially true.

5.2 Analysis of Cases

Using Claim 4, we have that E[d(rt, gσ(rt)) − d(rt, hσ(rt))] = E[DiffCost(rt)]. So, in order to
complete the proof for Lemma 5.1, it remains to show that E[

∑k
t=1 DiffCost(rt)] ≤ O(log ∆) ·

d(r1, s1).

Now, let Ai be the event that 2i−1 · δ1 ≤ maxj δj < 2i · δ1. Notice that Pr[Ai] is at most Qδ1,j
for some j ∈ [2i−1 · δ1, 2

i · δ1], which is in turn at most δ1
2i−1·δ1 = 1/2i−1 by Claim 5. Set

Xm =
∑m

t=1 DiffCost(rt). Then we have that

E[Xk] =

log ∆∑
i=1

E[Xk | Ai] · Pr[Ai],

since maxj δj cannot exceed ∆.

To bound E[Xk | Ai], we use Claim 3. Let q be the time such that δq = 0 and δq−1 > 0, and if
no such time exists, set q = k + 1. Then, for m < q, Xm = (δm − δm−1) + (δm−1 − δm−2) +
· · · + (δ2 − δ1) = δm − δ1 ≤ δm. For m = q, Claim 3 gives us that Xm − Xm−1 ≤ δm−1,
so that Xm ≤ 2 · δm−1. Then, for all m > q, Xm = Xm−1 since AG(rm) = AH(rm). Thus,
Xk ≤ 2 maxj δj ≤ 2i+1 · δ1.

Hence, we have that
∑log ∆

i=1 E[Xk | Ai] · Pr[Ai] ≤
∑log ∆

i=1 (2i+1 · δ1)/2i−1 = 4δ1 · log ∆. Finally,
we compare E[δ1] with d(r1, s1). Recall that h1 is the other neighbor (not s1) that is closest to r1.
Then E[δ1] = d(r1,h1)

d(h1,s1) · 0 + d(r1,s1)
d(h1,s1) · d(h1, s1) = d(r1, s1), and so Lemma 5.1 follows.

24

6 Concluding Remarks

In this paper we gave three different O(log k)-competitive algorithms for online metric matching
on the line, one of them also applicable to doubling metrics. These algorithms do no better than
O(log k) even on the line, and it would be intriguing to devise new algorithms that close the gap
between this logarithmic upper bound and theO(1) lower bound for special metrics. Improving the
deterministic upper bound for the line and the randomized upper bound for general metrics both
continue to be fascinating open problems.

Acknowledgments. We thank Ravi Krishnaswamy, Kirk Pruhs, and Matthias Englert for useful
conversations.

References

[BBGN07] N. Bansal, N. Buchbinder, A. Gupta, and J. S. Naor. An o(log2 k)-competitive algorithm for
metric bipartite matching. In Proceedings of the 15th annual European Symposium on Algo-
rithms, pages 522–533, 2007.

[FHK05] B. Fuchs, W. Hochstattler, and W. Kern. Online matching on a line. Theoretical Computer
Science, 332:251–264, 2005.

[FRT03] J. Fakcharoenphol, S. Rao, and K. Talwar. A tight bound on approximating arbitrary metrics by
tree metrics. In STOC ’03: Proceedings of the thirty-fifth annual ACM symposium on Theory of
computing, pages 448–455, 2003.

[GKL03] Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals, and
low–distortion embeddings. In FOCS ’03, pages 534–543, 2003.

[KMV94] S. Khuller, S. G. Mitchell, and V. V. Vazirani. On-line algorithms for weighted bipartite match-
ing and stable marriages. Theor. Comput. Sci., 127(2):255–267, 1994.

[KN03] E. Koutsoupias and A. Nanavati. The online matching problem on a line. In WAOA03, pages
179–191, 2003.

[KP93] B. Kalyanasundaram and K. Pruhs. Online weighted matching. J. Algorithms, 14(3):478–488,
1993.

[KP95] E. Koutsoupias and C. H. Papadimitriou. On the k-server conjecture. J. ACM, 42:971–983,
September 1995.

[KP98] B. Kalyanasundaram and K. Pruhs. Online network optimization problems, 1998. Online Al-
gorithms: The State of the Art , eds. A. Fiat and G. Woeginger, Lecture Notes in Computer
Science 1442, Springer-Verlag.

[KP06] Rohit Khandekar and Vinayaka Pandit. Online sorting buffers on line. In STACS 2006, volume
3884 of Lecture Notes in Comput. Sci., pages 584–595. Springer, Berlin, 2006.

[MNP06] A. Meyerson, A. Nanavati, and L. Poplawski. Randomized online algorithms for minimum
metric bipartite matching. In SODA ’06: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm, pages 954–959, 2006.

[Tal04] Kunal Talwar. Bypassing the embedding: Algorithms for low-dimensional metrics. In STOC
’04, pages 281–290, 2004.

25

A Some Illustrative Examples
In this section, we give a few well-known but useful bad examples for some natural algorithms for
the line, and a (perhaps less known) observation that a preprocessing step of bounding the aspect
ratio might offer hope for greedy algorithms previously considered useless. We also present a tight
instance for the HST-greedy and Random-Subtree algorithms on which they both incur an Ω(log k)
times the optimal cost in expectation.

A.1 A Bad Example for Greedy and a Tight Example for Algorithms Similar to
Harmonic

Consider k servers at the points {−(1 + ε), 1, 2, 22, . . . , 2k−2} on the integer line. The requests
appear at the points 0, 1, 2, 22, . . . , 2k−2. The deterministic greedy algorithm, which assigns to the
closest available server, will always assign each request (except the last) to the closest server on
its right, incurring a cost of 2k−1 + (1 + ε) on k requests, whereas the optimal cost is 1 + ε. This
shows a competitive ratio lower bound of 2Ω(k).

Now consider a randomized algorithm on the line with the following property: if the closest open
servers to the left and right are equidistant from the new request, assign to each with probability
1/2. (Note that the randomized algorithm discussed in Section 5 has this property.) The probability
that the algorithm uses the tth request to assign to the server at location −(1 + ε) is about 2−t, in
which case the algorithm pays approximately 2t for the matching. Thus the expected cost on k
requests is Θ(k), and giving a competitive ratio lower bound of Ω(k).

While these lower bounds sound terrible, let us observe that it is easy to mitigate their badness
somewhat. Using standard guess-and-double ideas and massaging the line metric (outlined in Sec-
tion B.1), we can get another line metric instance where the aspect ratio is bounded by O(k2). For
such low aspect-ratio instances, the above examples show a lower bound of Ω(k) and Ω(log k)
respectively. Indeed, the Ω(log k) lower bound for this class of randomized algorithms matches the
upper bound of O(log k) proved for Harmonic in Section 5.

A.2 A Tight Example for HST-greedy and Random-Subtree

Consider the simple setting where the k servers are at 1, 3, 4, 5, . . . , k + 1. The k requests are at
2, 3, 4, . . . , k + 1. Consider a random embedding of the line into a binary 2-HST. Let W be the
random variable representing the width of the largest subtree of the HST that contains the point 2
but not the point 1. Let C be the class of algorithms that serve a new request by assigning it to some
server within the subtree rooted at the least common ancestor of the new request and its closest free
server. Note that HST-greedy and Random-Subtree are both members of C. Then, any algorithm
of C will use the request that arrives at some point x ≥ W to assign to the server at point 1, thus
incurring a cost of at least W for the matching.

A standard calculation shows that the expected stretch of the edge (1, 2) in the HST will be
Θ(log k); indeed, no sublogarithmic stretch is possible even for embedding the line into 2-HSTs,
and the stretch is worst on the edges of the graph. The structure of the binary 2-HST now implies
that the size of the largest subtree that contains the point 2 but not the point 1 has expected size
Θ(log k). Hence, E[W] = Θ(log k). Since the optimal algorithm has cost 1, the expected com-
petitive ratio of HST-greedy and Random-Subtree (and any algorithm that is inherently greedy and

26

uses an HST to break ties) is Ω(log k) for this setting.

A.3 An Example for the MNP algorithm

We now show an example where Random-Subtree gets an asymptotic improvement over the al-
gorithm presented in [MNP06], which we will from now on refer to as the MNP algorithm. In
particular, the instance is a ∆-ary tree where the MNP algorithm has competitive ratio Ω(∆),
whereas Random-Subtree has competitive ratio O(log ∆). Consider the one-level tree with ∆
leaves `1, · · · , `∆ ordered from left to right, all of which share the same parent, and each of the ∆
edges have a cost of 1. For convenience, we will also denote ei to be the edge incident to the leaf
`i. The setting of servers is as follows: `1 has one server, and for 2 ≤ i ≤ ∆, `i has 2∆−i servers.
Hence, the number of servers k = 1 +

∑∆
i=2 2∆−i = 2∆−1, so it follows that ∆ = Θ(log k). The

first two requests appear at `1, and for each i ∈ [2,∆ − 1], the next 2∆−i requests appear at `i,
again from left to right.

First, note that two requests will appear at `1 where there is only one server, and no requests will
appear at `∆ where there is one server. For all other leaves `i, the number of requests that appear
at `i is the same as the number of servers located at `i. Also, an optimal matching can match r1

to the only server at `∆ for which there is no colocated request, and then the remaining requests
r2, · · · , rk can be matched to their colocated servers. Thus, the optimal matching has a cost of 2.

Note that for i ∈ [2,∆ − 1], the first 2∆−i − 1 requests of `i will always assign to their colocated
servers within `i. Since the random choices of Random-Subtree do not depend on the number of
servers occupying a leaf, these 2∆−i − 1 request-server pairs can be removed from the example
without changing the distribution of matchings across the remaining requests nor the cost of the
matching. After the removal of these request-server pairs, each leaf seats exactly one server, and
so the modified instance is equivalent to the uniform metric with ∆ requests and ∆ servers, with
each point at distance 2 away from one another. Setting Xi to be the indicator random variable
with Xi = 1 if the ith request cannot assign to its colocated server and Xi = 0 otherwise, we get
that X1 = 0, X2 = 1, Pr[Xi = 1] = 1/(∆ − i + 2) for 3 ≤ i ≤ ∆ − 1, and X∆ = 0. Note
that 2

∑∆
i=1 Pr[Xi = 1] represents the total cost of the matching, and so 2

∑∆
i=1 Pr[Xi = 1] =

2
∑∆

i=1 1/(∆− i+ 2) ≤ 2H∆. Thus, Random-Subtree has expected competitive ratio O(log ∆).

We now analyze the performance of the MNP algorithm. Since the MNP algorithm assigns to a
random server rather than a random leaf to break ties for a new request, we cannot simply remove
the colocated request-server pairs as in the analysis for Random-Subtree. LetAi represent the event
that the MNP algorithm uses edge ei in assigning a request to a server.

Lemma A.1 For all i ∈ [2,∆] and j ∈ [1, i− 1], Pr[Ai | Aj] ≥ 2j−i.

Proof. Given that A1 occurred, there must exist a request rx which originates from `j and as-
signs into another leaf. Note that if rx has been requested, originating from `j , then all leaves
`1, · · · , `j−1 have no more available servers. Hence, the total number of available servers is at
most 2∆−j . The probability that rx assigns into `i is 2∆−i/2∆−j ≥ 2j−i. This means that Ai
occurs, so we deduce that Pr[Ai | Ai] ≥ 2j−i.

Lemma A.2 For all i ∈ [1,∆], Pr[Ai] ≥ 1/2.

27

Proof. Note that Pr[A1] = 1. Inductively assume that for some i, Pr[Aj] ≥ 1/2 for all j ∈
[1, i − 1]. Then, Pr[Ai] ≥

∑i−1
j=1 Pr[Ai | Aj] · Pr[Aj]. We use the fact that Pr[A1] = 1, breaking

up the summation to get that

Pr[Ai] ≥
1

2
Pr[Ai | A1] +

1

2

i−1∑
j=1

Pr[Ai | Aj].

Now, Pr[Ai | A1] ≥ 21−i and Pr[Ai | Aj] ≥ 2j−i, so we conclude that Pr[Ai] ≥ 2−i+2−i−1(2i−
2) = 2−i + 1/2− 2−i = 1/2, thus completing the induction step.

Since the MNP algorithm uses each of the ∆ edges with probability 1/2, the MNP algorithm must
pay at least ∆/2 on expectation. Thus, the expected competitive ratio is Ω(∆).

B Discharging Some Assumptions
In this section, we show how to reduce the online metric matching to the special case where (a) we
are given a constant factor approximation to the cost of the optimal matching, and (b) where the
aspect ratio of the metric we consider is at most O(k3).

B.1 Bounding the Aspect Ratio

First, let us assume that we know of some valueZ such thatZ ∈ [Opt, 10Opt], i.e., a constant factor
approximation to the optimal value for eventual request sequence σ. In this case, we show how to
reduce the general problem to metrics where the aspect ratio is O(k3). Note that the constant 10 is
not important, since any constant strictly greater than 1 would suffice at the expense of increasing
the constant in the big-Oh.

Suppose the input metric is (V, d). Right off the bat, we can assume that all requests come at server
locations: as shown in [MNP06], this changes the competitive ratio by at most a constant factor,
and we can then ignore all of the non-server vertices. We will henceforth assume that |V | = k. Let
f∗σ be the optimal matching for sequence σ.

In the case that the metric is not given by a graph, it will still be useful to view the metric as a
edge-weighted complete graph G = (V,K|V |) where the length/weight of edge (u, v) is d(u, v).
We perform the following operations on the graph:

• Delete all edges of length more than Z so that the graph may now be disconnected.

• Take all edges of length less than Z/20k2 and make their length equal to Z/20k2.

Call this new graph G′ = (V ′, E′), and let d′ be the shortest-path metric in this graph. Note that
the aspect ratio of this metric is 20k3.

The optimal cost of any request sequence may be higher on this new graph/metric compared to the
cost on the original metric; certainly it is no lower since all distances in G′ are higher than in G.
However, we claim it has not increased by too much. Indeed, consider the same matching f∗σ : the
cost inG′ of any request-server pair could have increased from (almost) zero to Z/20k2×(k−1) ≤
Z/20k. This is because each pair is connected by a path of length at most k − 1. Moreover, we

28

are using the property that no (r, f∗(r)) in the optimal solution could have used an edge that was
deleted. But there are only k such pairs, so the additive increase is only at most Z/20. However,
we know that Z ∈ [Opt, 10 Opt], so the cost of the matching f∗σ in the new metric is at most
Opt + Z/20 ≤ 1.5 Opt. And the cost of the optimal matching on G′ can be no more than the cost
of this particular matching.

Finally, suppose we have a C-competitive algorithm A for metrics with aspect-ratio bounded by
20k3. Given an arbitrary instance (V, d) and an estimate Z for Opt as above, we can construct
(V, d′) and run A on it. We know that for an input sequence σ, we will obtain a matching whose
cost (when measured according to d′) is at most 1.5C times the optimal cost on d. Finally, the cost
according to d is only less, which gives us a 1.5C-competitive algorithm for general metrics.

B.1.1 The “Guess-and-Double” Step

Now we need to discharge the assumption that our algorithm has an estimate of Opt. Indeed,
suppose we have an online algorithm Aguess that takes in a metric space (V, d) and an estimate
Z and guarantees C-competitiveness for all sequences σ such that the optimal cost Opt(σ) of
satisfying σ satisfies Z ∈ [Opt(σ), 10Opt(σ)]. Then we claim we can get an algorithm A that
achieves O(C) competitiveness on all sequences without such an estimate Z.

We now describe the behavior of algorithm A on a metric (V, d), when given an online sequence
of requests σ. Let R(t) be the sequence of requests r1, r2, . . . , rt. Let us assume that the minimum
distance in the metric is 1; this can be ensured by a suitable scaling. For each i ∈ Z≥0, let τi be
the maximum index such that the optimal solution on the request sequence R(τi) has cost less than
10i, so that R(τi + 1) is the first prefix on which the cost is at least 10i. Note that R(τ0) must have
cost zero, since it has cost less than 100 = 1, and we assumed the least distance was 1. Finally,
having seen the sequence R(t), we know if t− 1 was τi for some i or not.

Suppose that we have been feeding the online requests to Aguess with some guess Z = 10i, so
that we are at time t and indeed Z ∈ (Opt(R(t)), 10Opt(R(t))]. Now when we get rt+1, if it is
still the case that Z ∈ (Opt(R(t + 1)), 10Opt(R(t + 1))], then we should continue to feed this
request to Aguess(Z). If, on the other hand, Opt(R(t + 1)) becomes at least Z = 10i—in other
words, if t = τi—then we want to undo all of the assignments we have done so far (and hence pay
for sending the requests back from their servers to their original locations), find a new parameter
Z ′ = 10j with j > i such that Z ′ ∈ (Opt(R(t+1)), 10Opt(R(t+1))], re-feed the entire sequence
of requests R(t+ 1) seen so far to Aguess(Z ′), and continue from there.

Note that the total cost incurred while we were feeding the requests to Aguess(Z = 10i) would
be at most C · Opt(R(τi)) < C · 10i, by the C-competitiveness of the algorithm Aguess(Z).
When we undo these assignments (which indeed we cannot), we would have to pay this amount
all over again. So, assuming we could undo these assignments and assuming the final optimal cost
Opt(σ) ∈ [10`, 10`+1), the total cost incurred is at most C · (2 · (1 + 10 + · · ·+ 10`) + Opt(σ)) ≤
4C · Opt(σ).

Finally, we don’t need to actually undo and redo these assignments: we can merely set up a bi-
jection between actual assignments of requests, and their ideal locations where we would have
mapped them had we undone/redone the assigments. When we want to map a future request r′

to a location taken by some request r that is ideally mapped elsewhere, we can instead map r′ to
that ideal location instead. The triangle inequality ensures that the cost incurred is no more than

29

this undo/redo model, and hence we have a 4C-competitive algorithm which works without any
guesses on Opt.

To summarize, it suffices to derive a C-competitive algorithm for points on the line where the
aspect ratio is bounded by O(k3), and we are also given an approximate value for Opt of the input
sequence. Indeed, given such an algorithm, we can use the above reductions to obtain an O(C)-
competitive algorithm for all point sets on the line, and requires no guesses on Opt. However,
a word of caution: these reductions do not maintain properties such as doubling dimension, and
hence cannot be used indiscriminately.

B.2 Embedding Lines and Doubling Metrics into HSTs

It is a standard fact that a set S ⊆ R of points on the line with aspect ratio poly(k) can be embedded
into dominating binary 2-HSTs with expected O(log k). (This has been previously used, e.g., in
the paper of Khandekar and Pandit [KP06].)

For the case of doubling metrics, directly changing the distances of the metric to ensure a bounded
aspect-ratio can alter the doubling dimension in undesirable ways. For this case we use the obser-
vation from the previous section that it suffices to give algorithms for the problem which take in an
estimate Z ∈ (Opt, 10Opt]. Hence, we can again delete all the edges of the graph representing the
metric which are longer than Z to ensure that the maximum distance between points in the metric
is at most kZ.

Now we run the [FRT03]-based embeddings from [GKL03, Section 6] or [Tal04, Section 3], which
embed doubling metrics into distributions of HSTs; however we stop the process when the diameter
of the clusters becomes Z/k2, say, and co-locate all servers still sharing a cluster at the same leaf
of the HST. This does not result in a dominating HST, since distances in the HST may be smaller
than in the original metric. However, the distance of any request-server pair is smaller only by at
most 2Z/k2. So if we find a competitive matching in the HST and translate it back to the original
metric, the cost of the solution may increase by at most O(Z/k) = o(Opt).

Finally, we need to pin down the relationship between the degree and α-parameter of α-HSTs
obtained from doubling metrics in the above process. Since we want an α-HST, we want the
diameters of the clusters at each level shrink by a factor of α at each level of the recursion. Hence

• the expected stretch will be O(α dimD log k).

• the number of children, ∆ of each internal node is at most the size of the 1/(c1 α)-net of
each cluster (for some constant c1 > 1). Since the doubling dimension is dimD, the size of
an δ-net is at most (c2/δ)

dimD . Hence, plugging in δ = 1/(c1α), we get ∆ ≤ (c1c2 α)dimD .

Hence, 2H∆ = 2dimD log(c1c2 α). If we set α = c3dimD log dimD for a large constant c3, we
satisfy α ≥ 2H∆—this can then be plugged into Theorem 4.1 for the setting ε = 1. This gives
us the following theorem, which suffices to get O(log k)-competitive algorithms for online metric
matchings on doubling metrics.

Lemma B.1 Consider a doubling metric (V, d) with doubling dimension dimD, and consider a
parameter Z such that the diameter of (V, d) is at most kZ. There exists an α = α(dimD) (V, d)
can be embedded into a distribution over α-HSTs such that

30

• each node in the α-HSTs have at most ∆ children, for some ∆ satisfying α ≥ 2H∆,
• the expected stretch is at most O(α · dimD · log k), which is O(log k) when dimD = O(1),
and
• for each HST in the distribution and for any set of k vertex pairs (ai, bi), the cost of∑k

i=1 dT (ai, bi) in the HST is at most O(Z/k) smaller than
∑k

i=1 d(ai, bi) in the original
metric.

31

	Introduction
	Our Results
	Other Related Work

	Notation and Preliminaries
	An O(logk) Algorithm for the Line
	Analysis via a ``Hybrid'' Algorithm
	Proof of the Hybrid Lemma
	Distance Traveled by the Cavities

	The Random-Subtree Algorithm
	The Algorithm
	The Root-Edges Lemma
	Bounding the Total Cost

	The Harmonic Algorithm for the Line
	A Coupling Argument
	Case 1
	Case 2
	Case 3
	Case 4

	Analysis of Cases

	Concluding Remarks
	Some Illustrative Examples
	A Bad Example for Greedy and a Tight Example for Algorithms Similar to Harmonic
	A Tight Example for HST-greedy and Random-Subtree
	An Example for the MNP algorithm

	Discharging Some Assumptions
	Bounding the Aspect Ratio
	The ``Guess-and-Double'' Step

	Embedding Lines and Doubling Metrics into HSTs

