
Improved Constructions of PRFs Secure Against

Related-Key Attacks

Kevin Lewi∗ Hart Montgomery∗ Ananth Raghunathan∗

May 8, 2014

Abstract

Building cryptographic primitives that are secure against related-key attacks (RKAs) is a
well-studied problem by practitioners and theoreticians alike. Practical implementations of block
ciphers take into account RKA security to mitigate fault injection attacks. The theoretical study
of RKA security was initiated by Bellare and Kohno (Eurocrypt ’03). In Crypto 2010, Bellare
and Cash introduce a framework for building RKA-secure pseudorandom functions (PRFs)
and use this framework to construct RKA-secure PRFs based on the decision linear and DDH
assumptions.

We build RKA-secure PRFs by working with the Bellare-Cash framework and the LWE-
and DLIN-based PRFs recently constructed by Boneh, Lewi, Montgomery, and Raghunathan
(Crypto ’13). As a result, we achieve the first PRFs from lattices secure against an (almost)
linear class of related-key functions. In addition, we note that our DLIN-based PRF (based on
multilinear maps) is the first RKA-secure PRF for affine classes under the DLIN assumption,
and the first RKA-secure PRF against a large class of polynomial functions under a natural
generalization of the DLIN assumption. Previously, RKA security for higher-level primitives
(such as signatures and IBEs) were studied in Bellare, Paterson, and Thomson (Asiacrypt ’12)
for affine and polynomial classes, but the question of RKA-secure PRFs for such classes remained
open.

Although our RKA-secure LWE-based PRF only applies to a restricted linear class, we show
that by weakening the notion of RKA security, we can handle a significantly larger class of affine
functions. Finally, the results of Bellare, Cash, and Miller (Asiacrypt ’11) show that all of our
RKA-secure PRFs can be used as building blocks for a wide variety of public-key primitives.

Keywords: related-key attacks, pseudorandom functions, learning with errors.

1 Introduction

The usual notions of security for cryptographic primitives do not address the possibility that an
attacker could adversarially modify the internal state of hardware devices that implement the
primitive. Indeed, fault injection attacks (and other types of side-channel attacks including cold-
boot attacks [21], timing attacks [23, 15], and power analysis attacks [26]) have shown that our
traditional security definitions are not sufficient for most practical implementations of provably
secure cryptographic primitives [11, 12, 32, 5].

∗Stanford University. Email: {klewi,hartm,ananthr}@cs.stanford.edu

1



To deal with fault injection attacks, cryptographers have developed the notion of related-key
attack (RKA) security. RKA security definitions [8] capture the following notion: in addition to
allowing the adversary to make input queries on the primitive for a randomly chosen secret key, the
adversary is allowed to make input queries on the primitive for adversarially chosen “related-key
deriving” functions φ ∈ Φ of a randomly chosen secret key (where Φ is a function family specified in
advance). This notion can be used to show that certain classes of tampering attacks are ineffective
against primitives proven secure in the presence of RKAs.

In the past few years, there has been much work in constructing RKA-secure primitives [6, 7, 2,
10, 34, 9]. In addition, RKA security is also of interest to practitioners, particularly in the design of
block ciphers [18, 22, 35]. In this work, we will focus our attention on building one of the most basic
of the RKA primitives—pseudorandom functions (PRFs). Not only do PRFs find applications in
many real-world implementations where side-channel attacks are possible (and hence RKA security
becomes relevant) [5], but RKA-secure PRFs are also known to imply RKA security for a wide range
of more advanced primitives, including signatures, identity-based encryption, and both public-key
and private-key chosen ciphertext secure encryption [7].

1.1 Background and Related Work

Bellare and Cash [6] developed the first RKA-secure PRF for a non-trivial class of functions.
Instantiations prior to [6] on RKA-secure PRFs required ideal ciphers, random oracles, or non-
standard assumptions [25, 8]. In addition, Bellare and Cash develop a novel framework (which
we call the BC framework) for building RKA-secure PRFs, and show how the DDH assumption
implies an RKA-secure PRF for the class Φprod = {φa : Zmq → Zmq | φa(k) = k× a}a∈Zmq , the class
of all Hadamard product (component-wise product) transformations to the key. Additionally, they
construct an RKA-secure PRF under the DLIN assumption [33, 29] for an interesting multiplicative
class Φ (where related keys are derived from scalar multiples of components of the key).

Bellare et al. [7] explore the possibilities of transferring RKA security from one primitive to
another (while preserving the class Φ of related-key deriving functions). In particular, they show that
RKA-secure PRFs can be used to construct a wide variety of higher-level RKA-secure primitives.
Thus, improvements in building RKA-secure PRFs have wide applicability to RKA-secure public-key
cryptographic primitives.

Applebaum et al. [2] show how to build RKA-secure symmetric encryption from a variety of
hardness assumptions for linear related-key attacks. Wee [34] presents chosen ciphertext RKA-secure
public-key encryption scheme constructions from the DBDH and LWE assumptions for linear
related-key attacks. Finally, Bellare et al. [10] show how to build RKA-secure variants from a variety
of primitives discussed in [7] for more expressive classes Φ including affine and polynomial function
families. However, constructing RKA-secure PRFs for linear, affine, or polynomial Φ is notably
left open. Concurrently, Bellare et al. [9] build RKA-secure signature schemes against related-key
deriving functions drawn from such classes of polynomials. Their construction relies on RKA-secure
one-way functions which appear to be easier to build under standard assumptions (as opposed to
RKA-secure PRFs).

PRFs are extremely well-studied primitives and have been built from a wide variety of assump-
tions [28, 17, 24, 14, 4, 13]. Currently known RKA-secure PRFs only consider the Naor-Reingold [28]
and Lewko-Waters [24] PRFs. We note that PRFs constructed by Boneh et al. [13] satisfy an
additional “key homomorphism” property which we find useful in constructing RKA-secure PRFs.
Our constructions are based on the PRFs considered in this work.
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1.2 Our Contributions

Lattice-based RKA-secure PRFs. We present the first lattice-based PRFs secure against
related-key attacks. Our construction achieves RKA security under the standard LWE assumption
against the class of related-key functions Φlin∗ = {φa : Zmq → Zmq | φa(k) = k + a}a∈( q

p
)Zmq over the

key space K = Zmq . The class ( qp)Zmq here denotes the vectors in Zmq whose entries are all multiples
of q/p (where p divides q). Ideally we would like to address RKA security for the entire class of
linear key shifts, but we only achieve a weaker notion of security. However, these restrictions are
quite plausible as they translate to an adversary that can inject faults into the higher order bits of
the key.1

RKA security against an affine class of related keys. Next, we show how the powerful
multilinear map abstraction by Garg et al. [19] along with the DLIN assumption in this abstraction
can be used to construct PRFs with RKA security against a very large and natural class of affine key
transformations Φaff = {φC,B : Zm×`p → Zm×`p | φC,B(K) = CK + B} over the key space K = Zm×`p .
For Φaff , we require that C comes from a family of invertible matrices and that Φaff be claw-free—for
all φ1, φ2 ∈ Φaff and K ∈ K, φ1(K) 6= φ2(K).

Both restrictions arise from a technical requirement under the BC framework. As noted in [6, 10],
some restrictions must be placed on Φaff in order for PRFs to achieve RKA security against them
(for example, Φaff cannot include constant functions φ(K) = B). Hence, our class Φaff is essentially
the most expressive affine class of transformations for which RKA PRF security is still attainable
under the Bellare-Cash framework. In fact, there are no known PRFs which are RKA-secure against
a class which does not have the claw-free restriction. Bellare et al. [10] constructed higher-level
primitives RKA-secure against affine classes, but left open the problem of constructing such a PRF
(for which we provide an answer).

Unique-input RKA security against an affine class. We note, however, that the assumption
that there exists an instantiation of the Garg et al. multilinear map abstraction [19] for which DLIN
holds is a fairly strong assumption. This raises the following question: Can we achieve a similar
result for RKA PRF security against affine transformations from a more standard assumption? We
answer this question in the affirmative by considering a slightly weaker notion of RKA security,
denoted unique-input RKA security, where adversary queries are restricted to unique inputs. We
build RKA-secure PRFs from the LWE assumption that can handle the class of transformations
Φln-aff = {φC,B : φC,B(K) = CK + B}, where C is a full-rank “low-norm” matrix and B is an
arbitrary matrix in Zm×mq from the LWE assumption. We observe that under this weaker notion of
security, our class is significantly more expressive than our first result from lattices because it allows
for the addition of arbitrary vectors. However, this requires us to work outside the Bellare-Cash
framework. We leave it as an open problem to construct “truly” RKA-secure PRFs from LWE (or
other standard assumptions, such as DDH) for an affine class of key transformations.

Unique-input RKA security against a class of polynomials. We further explore the con-
nection between key homomorphism and unique-input RKA security by using the multilinear map
abstraction to tackle a polynomial class of related-key functions. More specifically, we consider

1We note that when q and p are powers of 2, Φlin∗ captures all functions that perform linear shifts on the entries of
the key that do not modify the log(q/p)-least significant bits of each entry.
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the class of polynomials Φpoly(d) of bounded degree d over matrices Zm×mq and consider a natural
exponent assumption over multilinear maps called the Multilinear Diffie-Hellman Exponent (MDHE)
assumption. For technical reasons, we require that at least one of the polynomial’s non-constant
coefficient matrices is full-rank. This natural restriction simply ensures that the output of the
polynomial is sufficiently random given a uniformly drawn input of a special form. We note that
the MDHE assumption is a natural and fairly plausible generalization of the DLIN assumption.

Finally, we can apply the results of [7] to get Φ-RKA security for signatures, identity-based
encryption, and public and private key CCA encryption from our Φ-RKA-secure PRFs.

1.3 Our Techniques

At a high level, we use the Bellare-Cash framework with the (LWE- and DLIN-based) key homomor-
phic PRFs from Boneh et al. [13] to construct RKA-secure PRFs against the classes Φlin∗ and Φaff .
Below, we give an outline of the framework and note that key homomorphic PRFs are a natural
starting point due to the malleability requirement of the framework.

Bellare-Cash framework. The only known construction of RKA-secure PRFs to date is that
of Bellare and Cash [6]. In their framework, Bellare and Cash identify sufficient properties for
constructing an RKA-secure PRF. They first consider PRFs F : K×X → Y that are key malleable—
PRFs which have an efficient algorithm (denoted a transformer T) that when given an input
(φ, x) ∈ Φ × X and oracle access to F (k, ·) computes F (φ(k), x). In addition, T must satisfy a
uniformity property, namely, when F (k, ·) is replaced with a random function f(·), the outputs of T
on inputs (φ1, x1), . . . , (φQ, xQ) for distinct x1, . . . , xQ are uniform and independently distributed.
The framework also requires the existence of a key fingerprint—an input w ∈ X such that for all
k ∈ K and distinct φ1, φ2 ∈ Φ, F (φ1(k), w) 6= F (φ2(k), w).

For a class Φ with a suitable key malleable PRF, a fingerprint w, and a collision-resistant
hash function that satisfies a simple compatiblity property Hcom (see Definition 2.9), under the
Bellare-Cash framework, the authors show that the PRF Frka(k, x) = F (k,Hcom(x, F (k,w))) is
Φ-RKA-secure.

Applying the BC framework to the DLIN-based PRF. Our starting point is the construc-
tion of a DLIN-based key homomorphic PRF by Boneh et al. [13], who note that key homomorphic
PRFs are key malleable. In this work, we generalize this PRF to operate with the key space
K = Zm×`p instead of Z`p. The PRF has public parameters A0,A1 ∈ Z`×`q . On input x, the PRF is of

the form (g`)
W for W = KP where P ∈ Z`×`p is the publicly computable matrix Ax`Ax`−1

· · ·Ax1

(that only depends on the bits of x) and g` is the generator of a group with a multilinear map.
This additional algebraic structure allows us to consider the class of affine related-key deriving
functions of the form CK + B for matrices C ∈ Zm×mq and B ∈ Zm×`q . The pseudorandomness of
the PRF holds by a straightforward hybrid argument, noting that the rows of K are now identical
to independent keys of the original PRF.

Working in the exponent, given access to an oracle that computes W and an input φC,B, it is
easy to construct a transformer that computes W′ = CW + BP. From some simple algebra, one
can verify that this indeed computes the exponent W′ corresponding to FDLIN(φ(K), x). In addition,
as long as C is restricted to the set of full-rank matrices, it follows that the transformer described
above outputs uniform matrices if W corresponds to the outputs of a random function. From this,
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the rest of the BC framework can be applied and is shown in Section 3.2. We note here that the
restriction that Φ is claw-free seems to be inherently required in applying the BC framework (here,
we require it in constructing a suitable fingerprint), and we do not overcome this limitation in our
construction either.2

Applying the BC framework to the LWE-based PRF. Recollect that Boneh et al. construct
an “almost” key homomorphic LWE-based PRF F which on input x is of the form bPkcp, where
P = Ax`Ax`−1

· · ·Ax1 . (Here, bxcp for x ∈ Zq denotes multiplying x by p/q and rounding the result
to Zp.) Unfortunately, the “almost”-ness of the key homomorphism disallows a direct argument of
key malleability. Furthermore, a transformer which is “almost” key malleable (in the same sense) is
still insufficient for instantiating the BC framework.

This limitation can be overcome by observing that F (k1, x) + F (k2, x) = F (k1 + k2, x) if the
entries of either k1 or k2 are all multiples of q/p. This property is sufficient to show that F is
key malleable with respect to the class Φlin∗ , where k2 is required to be an element of ( qp)Zmq .

Additionally, this restriction is needed show that any fixed input w ∈ {0, 1}` acts as a key fingerprint
for F under the class Φlin∗ . It seems likely that this restriction is in fact necessary for applying the
BC framework, leaving this the most expressive class achievable for the LWE-based PRF F .

One natural question to ask is whether the Banerjee et al. [4] LWE-based PRF can be used
instead of F . We note that their PRF is not key homomorphic and hence the above approach does
not apply. However, we leave open the question of achieving unique-input RKA security for their
PRF (see Section 6).

Unique-input adversaries. As was observed by Bellare and Cash, key malleability is intuitively
useful in constructing RKA security because it allows us to simulate F (φ(k), ·) without access to the
key k but also leads to a simple related-key attack against any class that contains the functions φid

(the identity function) and any φ′ 6= φid. The difficulty in achieving security lies in the adversary’s
ability to request multiple related-key deriving functions on the same input x. Given φid, to attack
the pseudorandomness, the adversary can run the transformer for φ′ himself and compare the output
of the transformer to the output of the oracle on (φ′, x). Thus, Bellare and Cash require additional
tools.

However, the notion of key malleability suffices to show security against unique-input adversaries,
where the adversary’s queries are restricted to distinct x’s. In extending the RKA-secure LWE-based
PRF to a class of affine functions, as discussed earlier in this section, the presence of the rounding
does not directly imply key malleability. However, in Section 4, we work through the proof of
security of the pseudorandomness of F , along the lines of the proof in [13], to consider its RKA
security against the larger class Φln-aff . We show that the structure of the PRF allows us to simulate,
in addition to PRF queries on input x, RKA queries for functions φ ∈ Φln-aff . As in [13], the proof
works through several hybrid arguments that modify a challenger from a truly random function to a
pseudorandom function that also provides answers to RKA queries (φ, x) ∈ Φln-aff × {0, 1}`.

The low-norm restriction on the matrix C in φC,B ∈ Φln-aff is required to ensure that when using
LWE challenges in the hybrids, the noise does not grow larger than what the rounding allows. In the
final hybrid, the adversary interacts with uniform and independently chosen outputs corresponding
to inputs xi. As long as the adversary is restricted to unique inputs, this interaction is identical to

2However, in [7], the authors overcome this barrier and achieve RKA security for PRGs, not PRFs, against a class
Φ which is not claw-free.
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the game where the adversary receives uniform and independent (consistent) values on queries (φ, x).
This is sufficient to show RKA security. Whether we can take advantage of the algebraic structure
of other pseudorandom functions to directly prove unique-input RKA security is an interesting
question.

Unique-input security against a class of polynomials. We have shown how under the
DLIN and LWE assumptions we can build RKA-secure PRFs for classes of affine functions, but
unfortunately we do know how to extend these results to handle classes of polynomials. However,
in Section 5, we show that the PRF FDLIN (defined in Section 3.2) is RKA-secure against unique-
input adversaries under the (new) d-MDHE assumption (see Definition 2.6) for a class of degree-d
polynomials.

For integers `, d, and a prime p, we consider the class Φpoly(d) consisting of all degree-d

polynomials over Z`×`p of the form P (K) =
∑d

i=0 Ci ·Ki, where C0, . . . ,Cd,K ∈ Z`×`p and at least
one of C1, . . . ,Cd is full rank. To prove the RKA security of FDLIN against unique-input adversaries,
we consider a series of hybrid experiments which respond to queries (φP (·), x) ∈ Φpoly(d) × {0, 1}`,
where P (S) =

∑d
i=0 Ci · Si, by choosing d uniformly random, independent secrets K1, . . . ,Kd and

computing the weighted sum C0 +
∑d

i=1 Ci ·Ki, as opposed to choosing a single uniformly random
secret S and computing P (S). We show how an adversary which distinguishes between these two
cases can be used to break the d-MDHE assumption, and then we use the techniques used to prove
the pseudorandomness of FDLIN to complete the argument.

The additional requirement of at least one of C1, . . . ,Cd being full rank is only needed to ensure
that a sufficient amount of entropy from the secret key will remain in the output of the PRF. Note
that this restriction on Φpoly(d) rules out polynomials P for which the output of P on randomly
chosen key can be predicted (as an example consider constant polynomials P (K) = C for some
fixed C ∈ Z`×`p ), for which achieving RKA security is impossible. We believe Φpoly(d) captures what
is essentially the most expressive class of bounded-degree polynomials for RKA-secure PRFs.

Organization. In Section 2 we introduce preliminary notation and definitions. In Section 3 we
construct RKA-secure LWE- and DLIN-based PRFs using the BC framework. Then, in Section 4,
we give an LWE-based RKA-secure PRF against unique-input adversaries for an affine class of
transformations. In Section 5, we show how the DLIN-based PRF is secure against unique-input
adversaries where the related-key attacks come from a class of bounded-degree polynomials. We
conclude in Section 6. In Appendix A we give a security proof of the d-MDHE assumption in the
generic group model.

2 Preliminaries

2.1 Notation

Rounding. We define b·c to round a real number to the largest integer which does not exceed
it. For integers q and p where q ≥ p ≥ 2, we define the function b·cp : Zq → Zp as bxcp = i where
i · bq/pc is the largest multiple of bq/pc which does not exceed x. For a vector v ∈ Zmq , we define
bvcp as the vector in Zmp obtained by rounding each coordinate of the vector individually.

When p | q, we let ( qp)Zq denote the subgroup of Zq comprising the set {(q/p) · x | x ∈ Zq}. The
following lemma follows from some elementary arithmetic.
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Lemma 2.1. For any u ∈ ( qp)Zq and x ∈ Zq such that u ≡ x(q/p) mod q and any y ∈ Zq,

by + ucp = bycp + bucp = bycp + x (mod p).

Groups. For a matrix M, we let the component-wise exponentiation gM denote a matrix with

entries gMi,j . We let
(
gA
)B

denote the matrix with entries g(AB)i,j . We let Rki(Za×bp ) denote the
set of all a× b matrices over Zp of rank i.

Collision Resistance. The advantage of an efficient algorithm C in attacking the collision-
resistance security of a hash function H : D → R is Advcr

H (C) = Pr[x 6= x′ and H(x) = H(x′)]
where the probability is taken over (x, x′) ← C. For simplicity of exposition, we leave out the
necessary syntax for function families that takes into account the non-uniformity of the above
definition.

2.2 Pseudorandom Functions

We briefly review the definition of pseudorandom functions [20]. Informally, a pseudorandom
function is an efficiently computable function such that no efficient adversary can distinguish the
function from a truly random function given only black-box access.

More precisely, a PRF is an efficiently computable function F : K ×X → Y where K is called
the key space, X is called the domain, and Y is called the range. In this paper, we allow the PRF
to take additionally public parameters pp and use Fpp : K×X → Y to denote such a PRF. Security
for a PRF is defined using two experiments between a challenger and an adversary A. For b ∈ {0, 1}
define the following experiment Exptprf

b :

1. Given security parameter λ, the challenger samples and publishes public parameters pp to the

adversary. Next, if b = 0 the challenger chooses a random key k ∈ K and sets f(·) def
= Fpp(k, ·).

If b = 1 the challenger chooses a random function f : X → Y.
2. The adversary (adaptively) sends input queries x1, . . . , xQ in X and receives back f(x1), . . . , f(xQ).
3. Eventually the adversary outputs a bit b′ ∈ {0, 1}, which the experiment also outputs.

Definition 2.2 (Pseudorandom Function). A PRF Fpp : K × X → Y is secure if for all efficient
adversaries A the quantity

Advprf
F (A)

def
=
∣∣∣Pr
[
Exptprf

0 = 1
]
− Pr

[
Exptprf

1 = 1
]∣∣∣

is negligible.

2.3 RKA-secure PRFs

For a class of related-key deriving functions Φ = {φ : K → K}, the notion of Φ-RKA security for a
PRF F : K×X → Y is defined using an experiments between a challenger and an adversary A. For
b ∈ {0, 1} define the following experiment Exptprf-rka

b :

1. Given security parameter λ, the challenger samples and publishes public parameters pp to the

adversary. Next, the challenger chooses a random key k ∈ K and if b = 0, sets f(·) def
= F (k, ·).

Otherwise, if b = 1, the challenger chooses a random keyed function f : K ×X → Y.
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2. The adversary (adaptively) sends input queries (φ1, x1), . . . , (φQ, xQ) in Φ×X and receives
back f(φ1(k), x1), . . . , f(φQ(k), xQ).

3. The adversary outputs a bit b′ ∈ {0, 1}, and the experiment also outputs b′.

Definition 2.3 (RKA-secure PRF for Φ). A PRF F : K ×X → Y is RKA-secure with respect to
class Φ if for all efficient adversaries A the quantity

Advprf-rka
Φ,F (A)

def
=
∣∣∣Pr
[
Exptprf-rka

0 = 1
]
− Pr

[
Exptprf-rka

1 = 1
]∣∣∣

is negligible.

Unique-input RKA security (cf. [6]). We say that an adversary is unique-input in the above
security game if the input queries (φ1, x1), . . . , (φQ, xQ) ∈ Φ×X are such that x1, . . . , xQ are distinct.
A PRF is unique-input RKA-secure if it is RKA secure against unique-input adversaries.

2.4 Security Assumptions

Learning with errors (LWE) assumption. The LWE problem was introduced by Regev [31]
who showed that solving the LWE problem on average is as hard as (quantumly) solving several
standard lattice problems in the worst case.

Definition 2.4 (Learning With Errors). For integers q > 2 and a noise distribution χ over Zq,
the learning with errors problem (LWE) over n-dimensional vectors is to distinguish between the
distributions {A,Aᵀs + χ} and {A,u}, where m = poly(n), A ← Zn×mq , s ← Znq , χ ← χm, and
u← Zmq .

Regev [31] shows that for a certain noise distribution χ = Ψα,
3 for n polynomial in λ and

q > 2
√
n/α, the LWE problem is as hard as the worst-case SIVP and GapSVP under a quantum

reduction (see also [30, 16] for classical reductions). These results have been extended to show that
s can be sampled from a low-norm distribution (in particular, from the noise distribution χ) and
the resulting problem is as hard as the basic LWE problem [1]. Similarly, the noise distribution χ
can be a simple low-norm distribution [27]. Boneh et al. [13] show that the variant of LWE where
the entries of A are binary and m > n log q is equivalent (modulo a log q-factor loss in dimension)
to LWE over n-dimensional vectors. In this work, we let B ∈ R be an error bound such that for
χ← Ψα, |χ| ≤ B with overwhelming probability.

Low-norm matrix LWE. We work with the right-multiplied matrix form of (low-norm) LWE,
namely, that for a uniformly drawn A← {0, 1}m×2m, U← Zm×2m

q , S← Zm×mq , and X← χm×2m,
the problem is to distinguish between the distributions {A,SA + X} and {A,U}.

To compare it to the low-norm LWE variant in [13], we note that {A,SA+X} and {A,AᵀS+Xᵀ}
are distributed identically, and a standard hybrid argument shows that any adversary which can
distinguish {A,AᵀS + Xᵀ} from {A,U} can be used to distinguish {A,Aᵀs +χ} from {A,u} with
only a (1/m)-factor loss in advantage.

3For an α ∈ (0, 1) and a prime q, let Ψα denote the distribution over Zq of the random variable dqXc (mod q)
where X is a normal random variable with mean 0 and standard deviation α/

√
2π.
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The DLIN assumption in multilinear groups. In Section 3.2, we rely on the decisional
linear (DLIN) assumption (as stated in Boneh et al. [13]) for the Garg et al. abstraction of graded
multilinear maps [19]. Consider a sequence of groups ~G = (G1, . . . ,G`) with a set of bilinear maps
êi for i ∈ [1, `− 1], and a generator g of G1.

Definition 2.5 (Decisional Linear). The κ-decisional linear (κ-DLIN) assumption in the presence
of a graded `-linear map states that for any integers a, b ≥ κ, and for any ` ≤ j < κ the distributions{

g, gX
}
X←Rkj(Za×bp ) and

{
g, gY

}
Y←Rkκ(Za×bp )

are computationally indistinguishable, in the presence of ~G and {êi}i∈[1,`−1].

The Multilinear Diffie-Hellman Exponent assumption. In Section 5, we will use the Mul-
tilinear Diffie-Hellman Exponent (MDHE) assumption, defined as follows. Consider a sequence of
groups ~G = (G1, . . . ,G`) with a set of bilinear maps êi for i ∈ [1, `− 1], and a generator g of G1.

Definition 2.6 (Multilinear Diffie-Hellman Exponent). The d-Multilinear Diffie-Hellman Exponent
(d-MDHE) assumption in the presence of a graded `-linear map (as abstracted by [19]) states that,
in the presence of ~G and {êi}i∈[1,`−1], for any integer j ≥ `, the distribution{

gA,
〈
gS

i·A
〉
i∈[d]

, gB,
〈
gS

i·B
〉
i∈[d]

}
A,B←Rkj(Zj×jp ),S←Zj×jp

is computationally indistinguishable from the distribution{
gA,

〈
gUi
〉
i∈[d]

, gB,
〈
gVi
〉
i∈[d]

}
A,B←Rkj(Zj×jp ), ∀i∈[d],Ui,Vi←Zj×jp

.

We note that the 1-MDHE assumption is essentially equivalent to the 2`-DLIN assumption (where
j = ` and κ = 2` as in [13]), and hence the d-MDHE assumption can be seen as a generalization of
DLIN assumption to the dth exponent of the secret.

2.5 The Bellare-Cash Framework

Bellare and Cash [6] give a general framework (denoted the BC framework) for constructing RKA-
secure PRFs for a class Φ using a key malleable PRF, a key fingerprint, and a collision-resistant
hash function. We review their definitions and main theorem here.

Definition 2.7 (Key Malleable PRF). A PRF F : K × X → Y is key malleable if there exists
an efficient algorithm T, which on input φ ∈ Φ and x ∈ X and with oracle access to F (k, ·),
which satisfies TF (k,·)(φ, x) = F (φ(k), x), for all k ∈ K. Also, we require that for any distinct
x1, . . . , xQ ∈ X , if f : X → Y is a truly random function, then Tf(·)(φ, x1), . . . ,Tf(·)(φ, xQ) are
distributed independently and uniformly in Y.

Definition 2.8 (Key Fingerprint). An element w ∈ X is a key fingerprint if for all k ∈ K and
distinct φ1, φ2 ∈ Φ, F (φ1(k), w) 6= F (φ2(k), w).

Definition 2.9 (Compatible Hash Function). For a fingerprint w, a hash function Hcom : X×Y → R
is compatible if the set of oracle queries made by TF (k,·)(φ,w) over all φ ∈ Φ is disjoint from the set
of oracle queries made by TF (k,·)(φ, z) over all z ∈ R and φ ∈ Φ.
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Theorem 2.10 (c.f. [6, Theorem 3.1], paraphrased). For a fixed class Φ of related-key deriving
functions, let F : K ×X → Y be a key malleable PRF for Φ, w ∈ X a key fingerprint for F and Φ,
and Hcom : X × Y → X a compatible hash function. Define Frka : K ×X → Y as

Frka(k, x) = F (k,Hcom(x, F (k,w))).

For any probabilistic polynomial-time (PPT) adversary A against the RKA PRF Frka for the class Φ,
there exist PPT adversaries B against the PRF security of FLWE and C against the collision-resistance
of the hash function Hcom such that

Advprf-rka
Φ,Frka

(A) ≤ Advprf
F (B) + Advcr

Hcom
(C) .

3 New RKA-secure PRFs Using the BC Framework

In this section, we use the BC framework [6] to construct new RKA-secure PRFs. We introduce
two classes of related-key functions, a linear (Φlin∗) and an affine (Φaff) class, and show that the
key homomorphic PRFs from Boneh et al. [13] can be used to instantiate the BC framework. The
main technical challenge requires using the key homomorphism property to construct appropriate
transformers required in the BC framework.

3.1 RKA-secure PRFs for a Restricted Linear Class Φlin∗

Boneh, Lewi, Montgomery, and Raghunathan [13] constructed the following PRF that is almost key
homomorphic and showed its pseudorandomness under the LWE assumption.

The PRF FLWE. For parameters m, p, and q ∈ N such that p | q, the public parameters of the PRF
are binary matrices A0,A1 ∈ Zm×mp . The PRF key is a vector k ∈ Zmq . The PRF FLWE : Zmq → Zmp
is defined as follows:

FLWE(k, x) =

⌊∏̀
i=1

Axi · k

⌋
p

. (3.1)

Theorem 3.1 (cf. [13], paraphrased). The function FLWE is pseudorandom under the LWE assump-
tion for suitable choices of the parameters.

The class Φlin∗. Recall the definition of ( qp)Zq. We consider a class of linear RKA functions
defined as follows:

Φlin∗ = {φa : Zmq → Zmq | φa(k) = k + a}a∈( q
p

)Zmq . (3.2)

We use the homomorphic property of the PRF to construct a transformer, that we denote T
f(·)
lin ,

in a straightforward manner: T
f(·)
lin (φa, x) := f(x) + FLWE(a, x). To use the BC framework, it is

necessary to show that for the class of RKA functions Φlin∗ , the PRF and the transformer satisfy
the malleability and uniformity properties.

Lemma 3.2 (Malleability). For all k ∈ Zmq , φ ∈ Φlin∗, and x ∈ {0, 1}`, it holds that

T
FLWE(k,·)
lin (φ, x) = FLWE(φ(k), x). (3.3)
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Proof. Fix a key k ∈ Zmq and x ∈ {0, 1}`. Let φa denote a function in Φlin∗ corresponding to

a ∈ ( qp)Zmq . Define the product of matrices P =
∏`
i=1 Axi . From the definition of the transformer

T
FLWE(k,·)
lin the left side of equation (3.3) equals bPkcp + bPacp. The right side of the equation is
bP(k + a)cp = bPk + Pacp. As a ∈ ( qp)Zmq , it holds that Pa ∈ ( qp)Zmq . Applying Lemma 2.1 on
each coordinate, it holds that bPk + Pacp = bPkcp + bPacp, as required.

The following lemma follows straightforwardly from the definition of T
f(·)
lin .

Lemma 3.3 (Uniformity). If f : {0, 1}` → Zmp is a random function and x1, . . . , xQ ∈ {0, 1}`

are distinct, for any functions φ1, . . . , φQ ∈ Φlin∗, the values T
f(·)
lin (φi, xi) are independently and

uniformly distributed in Zmp .

Next, we show that any w ∈ {0, 1}` is a key fingerprint for Φlin∗ .

Lemma 3.4 (Fingerprint). For any w ∈ {0, 1}`, k ∈ Zmq , for any distinct φ1, φ2 ∈ Φlin∗, it holds
that FLWE(φ1(k), w) 6= FLWE(φ2(k), w).

Proof. For i ∈ {1, 2}, let φi = φai for vectors ai ∈ ( qp)Zmq . Let P =
∏`
i=1 Awi , the product of

full-rank matrices. As φ1 and φ2 are distinct and P is full-rank over Zq, it holds that P(a1−a2) = u
for some non-zero u. Moreover, as a1 and a2 are in ( qp)Zmq , the difference (a1 − a2) and therefore u

are in ( qp)Zmq . Now, note that FLWE(φ1(k), w) = bP · k + P · a1cp = bP · k + P · a2 + ucp. Applying

Lemma 2.1, this in turn equals bP · k + P · a2cp + bucp = FLWE(φ2(k), w) + bucp. As u ∈ ( qp)Zmq
and is non-zero, bucp is also non-zero in Zmp concluding the proof of the lemma.

Consider a collision-resistant hash function H : {0, 1}` × Zmq → {0, 1}`−1 and the fingerprint

w = 0`. We define H
(Φlin∗ )
com : {0, 1}` × Zmq → {0, 1}` as H

(Φlin∗ )
com (x, y) = 1‖H(x, y) and note that it

is a compatible hash function. Applying Lemmas 3.2–3.4 and Theorem 3.1 to the BC framework,
Theorem 2.10 implies the following result.

Theorem 3.5. Under the LWE assumption and the collision-resistance of the hash function H, the
function Frka-lin : Zmq × {0, 1}` → Zmp defined as:

Frka-lin(k, x) = FLWE

(
k, H

(Φlin∗ )
com

(
x, FLWE

(
k, 0`

)))
is an RKA-secure PRF with respect to Φlin∗.

3.2 RKA-secure PRFs for an Affine Class Φaff

In addition to the LWE-based almost key homomorphic PRF, Boneh et al. [13] also constructed a
“fully” homomorphic PRF under the DLIN assumption over groups equipped with a multilinear map.

The PRF FDLIN. For parameters m and ` ∈ N, let ~G = (G1, . . . ,G`) be a sequence of groups
equipped with a graded `-multilinear map {êi}i∈[`−1]. The public parameters comprise pp =(
gA0 , gA1

)
, where A0,A1 ← Rk`

(
Z`×`p

)
. The PRF key K is a matrix in Zm×`p . Define FDLIN : Zm×`p ×

{0, 1}` → (G`)
m×` as follows:

FDLIN(K, x) = (g`)
W, where W = K ·

(∏̀
i=1

Axi

)
. (3.4)
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Theorem 3.6 (cf. [13], paraphrased). The function FDLIN is pseudorandom under the DLIN
assumption for suitable choices of parameters.

As noted by Boneh et al., the PRF can be evaluated at a point x = x1 . . . x` ∈ {0, 1}` given the
the public parameters pp and secret key k ∈ Z`p using the graded bilinear maps êi : G1×Gi → Gi+1.
The matrix multiplication is carried out one step at a time by nesting these bilinear maps as follows:

FDLIN(K, x) = ê`−1

(
gKAx1 , ê`−2

(
gAx2 , . . . ê2

(
gAx`−2 , ê1

(
gAx`−1 , gAx`

))))
,

where gKAx1 is computed “in the exponent” given K and gAx1 . A pairing ê
(
gA0 , gA1

)
of matrices

given in the exponent is done by computing the component-wise dot products of rows of A0 with
columns of A1 using the bilinear map ê.

Observe that this PRF is identical to the DLIN-based PRF in [13] except that the key K is now a
matrix. This is required to define a meaningful affine class over the key space. The pseudorandomness
extends to the case where K is a matrix by considering the rows of K, k1

ᵀ, . . . ,km
ᵀ to be m

independent keys of the original DLIN-based PRF. The key homomorphism also extends in a
straightforward manner.

The affine class Φaff . With the above DLIN-based PRF, we can consider the following affine
class of related-key deriving functions. We define

Φaff = {φC,B : Zm×`p → Zm×`p | φC,B(K) = CK + B}, (3.5)

for matrices C ∈ Zm×mp and B ∈ Zm×`p constrained as follows: (a) the class Φaff is claw-free, and (b)
C is a full-rank matrix.

As in Section 3.1, the key homomorphism of FDLIN allows us to construct a transformer, denoted

T
f(·)
aff , in the following manner: T

f(·)
aff (φC,B, x) sets f(x) = (g`)

F and computes (g`)
CF · FDLIN(B, x).

In other words, we left-multiply (in the exponent) the output of f(·) with entries from C and then
use the homomorphism of FDLIN to incorporate B. We use the BC framework and show that for
the class of related-key functions Φaff , the PRF and the transformer satisfy the malleability and
uniformity properties.

Lemma 3.7 (Malleability). For all K ∈ Zm×`p , φ ∈ Φaff , and x ∈ {0, 1}`, it holds that

T
f(·)
aff (φ, x) = FDLIN(φ(k), x). (3.6)

Proof. The proof follows from elementary algebra in the exponent. Let φ = φC,B for arbitrary
C and B. For a key K and input x, let W be the matrix in equation (3.4). By definition,

T
f(·)
aff (φ, x) = (g`)

C·W · FDLIN(B, x) = FDLIN(CK + B, x) as required. The last equality follows from
the key homomorphism of FDLIN.

The following lemma follows straightforwardly from the definition of T
f(·)
aff .

Lemma 3.8 (Uniformity). If f : {0, 1}` → (G`)
m×` is a random function and x1, . . . , xQ ∈ {0, 1}`

are distinct, for any functions φ1, . . . , φQ ∈ Φaff , the values T
f(·)
aff (φi, xi) are independently and

uniformly distributed in (G`)
m×`.

Next, we show that any w ∈ {0, 1}` is a key fingerprint for Φlin∗ .
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Lemma 3.9 (Fingerprint). For any w ∈ {0, 1}`, for any K ∈ Zm×`q , and for any two distinct
φ1, φ2 ∈ Φaff , it holds that FDLIN(φ1(K), w) 6= FDLIN(φ2(K), w).

Proof. We use the fact that the family Φaff is claw-free. For any key K, this implies that

φ1(K) 6= φ2(K). For i ∈ {1, 2}, let Wi denote the matrix φi(K) ·
(∏`

i=1 Awi

)
. The product of

full-rank matrices Awi is full-rank and as φ1(K) 6= φ2(K), it follows that W1 6= W2. As FDLIN is
defined as (g`)

W for generator g`, it holds that if W1 6= W2, then (g`)
W1 6= (g`)

W2 concluding the
proof of the lemma.

Consider a collision-resistant hash function H : {0, 1}`× (G`)
m×` → {0, 1}`−1 and the fingerprint

w = 0`. We define H
(Φaff)
com : {0, 1}` × (G`)

m×` → {0, 1}` as H
(Φaff)
com (x, y) = 1‖H(x, y) and note that it

is a compatible hash function. Applying Lemmas 3.7–3.9 and Theorem 3.6 to the BC framework,
Theorem 2.10 implies the following result.

Theorem 3.10. Under the DLIN assumption and the collision-resistance of the hash function H,
the function Frka-aff : Zm×`p × {0, 1}` → (G`)

m×` defined as:

Frka-aff(K, x) = FDLIN

(
K, H

(Φaff)
com

(
x, FDLIN

(
K, 0`

)))
is an RKA-secure PRF with respect to Φaff .

4 Unique-Input RKA-secure PRFs for an Affine Class

In this section, we construct RKA-secure PRFs from the LWE assumption for a slightly more
restricted notion of RKA security, denoted unique-input RKA security. As explained in Section
1.3, we work directly with the pseudorandomness proof of FLWE to show unique-input RKA security
against a larger class of affine related-key functions rather than the restricted linear class Φlin∗ from
Section 3.1. To do this, we use the algebraic structure that suits the key homomorphism of FLWE to
overcome the restrictions of Φlin∗ required in order to apply the Bellare-Cash framework. We prove
unique-input RKA security for the affine class Φln-aff = {φC,B : φC,B(K) = CK + B}, where C is a
full rank matrix in [−c, c]m×m for a small constant c, and B is an arbitrary matrix in Zm×mq .

We consider the PRF FLWE where the key k, originally a vector, is replaced by a matrix K
in order to obtain the algebraic structure required for Φln-aff . Recollect the definition of FLWE

from Equation (3.1). For parameters m, p, q ∈ N such that p | q, the public parameters of the
PRF are binary matrices A0,A1 ∈ Zm×mp . The key is now a matrix K ∈ Zm×mq , and the PRF

FLWE : Zm×mq × {0, 1}` → Zm×mp is defined as follows:

FLWE(K, x) =

⌊
K ·

∏̀
i=1

Axi

⌋
p

. (4.1)

Recollect the bound B for samples drawn from the LWE error distribution Ψα. In the rest of the
section, we set the parameters of the system q, p,m, c,B, λ, ` > 0 such that the quantity (2m)`cBp/q
is negligible in the security parameter λ. This is along the lines of the parameters chosen in [13].
We state the following theorem for this choice of parameters:

Theorem 4.1. Under the LWE assumption, the PRF FLWE defined in Equation (4.1) is RKA-secure
against unique-input adversaries for the class Φln-aff .
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Proof of Theorem 4.1. In what follows, for a bit string x on ` bits, we use x|j to denote the
bit string comprising bits j through ` of x. Let x|`+1 denote the empty string ε∗. Let A be a
probabilistic polynomial time unique-input RKA adversary. We consider the following experiments
interacting with A.

Experiment Gj for j ∈ [1, `+ 1].

1. The challenger samples as public parameters full-rank matrices A0,A1 ∈ {0, 1}m×m ⊂ Zm×mq

which are sent to the adversary.
2. The challenger creates a lookup table L of pairs (w,Z) ∈ {0, 1}`−j+1 × Zm×mq , and initializes

L to contain only the pair (ε∗,R) for some randomly chosen R ∈ Zm×mq .

3. For k ∈ [Q], the adversary (adaptively) sends input queries
(
φ

(k)
C,B, x

(k)
)
∈ Φln-aff × {0, 1}`

to the challenger. For each input query, the challenger checks to see if there is a pair(
x(k)|j ,Z

)
in L for some Z ∈ Zm×mq . If there is no such pair, then the challenger chooses a

random Y ∈ Zm×mq , adds the pair
(
x(k)|j ,Y

)
to L, and sets Z = Y. The challenger returns

N =
⌊
CZ

∏j−1
i=1 A

x
(k)
i

+ B
∏`
i=1 A

x
(k)
i

⌋
p

to the adversary.

4. The adversary outputs a bit b′ ∈ {0, 1}, which the experiment also outputs.

Experiment Hj for j ∈ [1, `+ 1].

1. The challenger samples as public parameters full-rank matrices A0,A1 ∈ {0, 1}m×m ⊂ Zm×mq

which are sent to the adversary.
2. The challenger creates a lookup table L of triples (w,Y,Z) ∈ {0, 1}`−j+1 × Zm×mq × Zm×mq ,

and initializes L to contain only the triple (ε∗,R,∆) for some randomly chosen R ∈ Zm×mq

and ∆← Ψ
m×m
α .

3. For k ∈ [Q], the adversary (adaptively) sends input queries
(
φ

(k)
C,B, x

(k)
)
∈ Φln-aff × {0, 1}`

to the challenger. For each input query, the challenger checks to see if there is a triple
(x(k)|j−1,Z,∆) in L for some Z ∈ Zmq and ∆ ← Ψ

m×m
α . If there is no such triple, then the

challenger chooses a random Y ∈ Zm×mq and random V0,V1 ← Ψ
m×m
α , adds the triples(

0 ‖
(
x(k)|j

)
,Y,V0

)
and

(
1 ‖
(
x(k)|j

)
,Y,V1

)
to L, and sets Z = Y and ∆ = V

x
(k)
j−1

(i.e., V0

or V1 depending on the j − 1th bit of x(k)). The challenger returns to the adversary the value:

N =

⌊
C

(
ZA

x
(k)
j−1

+ ∆

)
·
j−2∏
i=1

A
x
(k)
i

+ B ·
∏̀
i=1

A
x
(k)
i

⌋
p

.

4. The adversary outputs a bit b′ ∈ {0, 1}, which the experiment also outputs.

Observe that G`+1 responds to the adversary’s queries identically as in Exptprf-rka
0 . Hence,

Pr
[
Exptprf-rka

0 = 1
]

= Pr[G`+1 = 1].

Lemma 4.2. For all j ∈ [2, `+ 1], it holds that |Pr[Gj = 1]− Pr[Hj = 1]| is negligible.

Proof. In Experiment Hj , let Mk = CZA
x
(k)
j−1

·
∏j−2
i=1 A

x
(k)
i

and Wk = C∆ ·
∏j−2
i=1 A

x
(k)
i

. Since

the entries of C lie within [−c, c], the entries of ∆ lie within [−B,B], and the entries of each of
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the j − 2 matrices A
x
(k)
i

lie within {0, 1}, the entries of Wk must lie within [−cBmj−2, cBmj−2].4

Since A0 and A1 are full rank, the product of these matrices is also full rank. Since Z is drawn
uniformly at random from Zm×mq , the matrix Mk is distributed uniformly in Zm×mq . Thus, the
probability that bMk + Wkcp 6= bMkcp is at most m2(cBmj−2)p/q. By taking a union bound over

all x ∈ {0, 1}`, we have that the probability that there exists some input x ∈ {0, 1}` for which
bMk + Wkcp 6= bMkcp is at most (2m)`cBp/q. Conditioned on the above event not occurring, it
holds that for all x, bMk + Wkcp = bMkcp which implies that Gj and Hj respond identically to
adversary queries. Therefore |Pr[Gj = 1]− Pr[Hj = 1] | is bounded by the probability of the above
“bad” event, which is negligible for a suitable choice of parameters.

Lemma 4.3. Under the LWE assumption, for all j ∈ [2, ` + 1], it holds that the quantity
|Pr[Gj−1 = 1]− Pr[Hj = 1]| is negligible.

Proof. Recollect the definition of the low-norm matrix LWE problem defined in Section 2.4. We
construct a simulator Sim against a low-norm matrix LWE challenger which gives Q LWE challenges
rather than just one. Note that a standard hybrid argument can be used to show that an adversary
against an LWE challenger which gives Q LWE challenges can be used to construct an adversary
against an LWE challenger for only a single LWE challenge, with a 1/Q loss in advantage. When the
LWE challenger gives “real” challenges to the simulator, Sim behaves as a challenger for Experiment
Hj , and when the LWE challenger gives “random” challenges, Sim behaves as a challenger for
Experiment Gj .

The simulator Sim queries the LWE challenger to receive Q samples, each of the form (U,Vi) ∈
Z2m×m
q × Z2m×m

q for i ∈ [Q]. We will refer to U(0),V
(0)
i ∈ Zm×mq as the first m rows of U and

Vi, and U(1),V
(1)
i ∈ Zm×mq as the last m rows of U and Vi, respectively. Sim creates two lists of

matrices List(0), List(1) ∈ (Zm×mq )Q such that List(0) =
〈
V

(0)
i

〉
i∈[1,Q]

and List(1) =
〈
V

(1)
i

〉
i∈[1,Q]

. Sim

then sets Ai = U(i) for i ∈ {0, 1}. Sim then creates a lookup table of pairs L : {0, 1}`−j × Zm×mq ,
initializing the table to contain the pair (ε∗,R) for a randomly chosen R← Zm×mq . Sim also keeps
a counter k ∈ Z, initialized to 1. Sim sends pp = (A0,A1) to the adversary.

Now, when the adversary A makes a query (φC,B, x̂) ∈ Φln-aff × {0, 1}`, Sim first checks if the

pair (x̂|j−1,Z) exists in L, for some Z ∈ Zm×mq . If not, he adds the pairs
(

0 ‖ (x̂|j) , List(0)
k

)
and(

1 ‖ (x̂|j) , List(1)
k

)
to the table L, and sets Z = List

(x̂j−1)
k , and increments k by 1. Then, Sim responds

to the adversary’s query by returning
⌊
CZ

∏j−2
i=1 Ax̂i + B

∏`
i=1 Ax̂i

⌋
p
. Finally, when A outputs a

bit b′, Sim also outputs b′. Note that the counter k will never exceed Q, since A makes at most Q
queries, and therefore the simulation is well-defined.

If the LWE challenges are of the form (U,Ri) for each i ∈ [Q], then each Z is distributed
uniformly and independently across queries which differ on bits j − 1 through `, which means that

Sim responds to queries x with
⌊
CZ

∏j−2
i=1 Axi + B

∏`
i=1 Axi

⌋
p
, and therefore Sim has simulated

Gj−1. If instead the LWE challenges are of the form (U,KiU + ∆i) for each i ∈ [Q], then Z
is of the form KAxj−2 + ∆ for each query, which means that Sim responds to queries x with

4The fact that entries of ∆ lie within [−B,B] holds only with overwhelming probability, but we will ignore this
detail for ease of presentation, as it does not affect the final theorem.
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⌊
C

(
KA

x
(k)
j−1

+ ∆

)∏j−2
i=1 A

x
(k)
i

+ B
∏`
i=1 Axi

⌋
p

, and therefore Sim has simulated Hj . Under the

LWE assumption, the claim follows.

Lemma 4.4. Pr[G1 = 1] = Pr
[
Exptprf-rka

1 = 1
]
.

Proof. Recall that in G1, on query (φC,B, x) ∈ Φln-aff × {0, 1}`, the challenger responds with

N =
⌊
CZ + B

∏`
i=1 Axi

⌋
p
, where each Z is uniformly and independently distributed for distinct

input queries x. Since C is full rank and B
∏`
i=1 Axi is independent of Z, it follows that N is

distributed as a uniform element in Zm×mp , independently for each input query x ∈ {0, 1}`.

Applying Lemmas 4.2–4.4 yields Theorem 4.1.

5 Unique-Input RKA-secure PRFs for a Class of Polynomials

Recall the definition of the PRF FDLIN from Section 3.2 and the definition of the d-MDHE assumption
from Section 2.4. In this section, under the d-MDHE assumption, we show that FDLIN is RKA-secure
against unique-input adversaries with respect to the following class of bounded-degree polynomials.
For positive integers `, d and prime p we define

Φpoly(d) =
{
φP (·) : Z`×`p → Z`×`p | φP (·)(K) = P (K)

}
,

for polynomials P over Z`×`p of degree at most d which have at least one coefficient matrix (excluding

the constant coefficient matrix) which is full rank. In other words, if P (K) =
∑d

i=0 Ci ·Ki for
matrices Ci ∈ Z`×`p , then there exists a j > 0 such that Cj ∈ Rk`

(
Z`×`p

)
. .

Theorem 5.1. Under the d-MDHE assumption, the PRF FDLIN is RKA-secure against unique-input
adversaries for the class Φpoly(d).

Proof of Theorem 5.1. For a bit string x on ` bits, we use x|j to denote the bit string comprising
bits j through ` of x, and let x|`+1 denote the empty string ε∗. Let A be a probabilistic polynomial
time unique-input RKA adversary. We consider the following experiments interacting with A.

Experiment Exptj for j ∈ [1, `].

1. The challenger samples public parameters A0,A1 ← Rk`(Z`×`p ). Then the challenger sends

pp =
(
g, gA0 , gA1

)
to the adversary.

2. The challenger creates a lookup table L of pairs
(
w, 〈Zi〉i∈[d]

)
∈ {0, 1}`−j+1 × Z`×`p , and

initializes L to contain only the pair
(
ε∗, 〈Ri〉i∈[d]

)
for some randomly chosen vector of matrices

〈Ri〉i∈[d] ∈
(
Z`×`p

)d
.

3. For k ∈ [1, Q], the adversary (adaptively) sends input queries
(
φ

(k)
P (·), x

(k)
)
∈ Φpoly(d) × {0, 1}`

to the challenger. For i ∈ [0, d], let Ci ∈ Z`×`p be the coefficients of P , so that for all

M ∈ Z`×`p , P (M) =
∑d

i=0 Ci ·Mi. For each input query, the challenger checks to see if

there is a pair
(
x(k)|j , 〈Zi〉i∈[d]

)
in L for a list of matrices 〈Zi〉i∈[d] ∈

(
Z`×`p

)d
. If there is no
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such pair, then the challenger chooses a random list of matrices 〈Yi〉i∈[d] ∈
(
Z`×`p

)d
, adds

the pair
(
x(k)|j , 〈Yi〉i∈[d]

)
to L, and sets Zi = Yi for all i ∈ [d]. The challenger computes

N = C0 ·
∏`
i=1 A

x
(k)
i

+
(∏d

i=1 Ci · Zi
)
·
(∏j−1

i=1 A
x
(k)
i

)
and returns gN` ∈ (G`)

`×` to the adversary.

4. Eventually the adversary outputs a bit b′ ∈ {0, 1}, which the experiment also outputs.

Lemma 5.2. Under the d-MDHE assumption,
∣∣∣Pr[Expt` = 1]− Pr

[
Exptprf-rka

0 = 1
]∣∣∣ is negligible.

Proof. We construct a simulator Sim against a MDHE challenger such that when the MDHE
challenger gives “real” challenges to the simulator, Sim behaves as a challenger for Experiment
Exptprf-rka

0 , and when the MDHE challenger gives “random” challenges, Sim behaves as a challenger
for Experiment Expt`.

The simulator Sim queries the MDHE challenger for a sample
(
gU
∗
,
〈
gUi
〉
i∈[d]

, gV
∗
,
〈
gVi
〉
i∈[d]

)
,

where U∗,V∗ ∈ Rk`(Z`×`p ) and Ui,Vi ∈ Z`×`p for each i ∈ [d]. The simulator must decide whether

there exists some S ∈ Z`×`p such that Ui = Si ·U∗ and Vi = Si ·V∗ for all i ∈ [d], or whether all

2d+ 2 matrices in the set
{

U∗,V∗, 〈Ui〉i∈[d] , 〈Vi〉i∈[d]

}
are distributed uniformly and independently.

The simulator embeds the MDHE challenge by setting A0 = U∗ and A1 = V∗. The simulator
then creates a lookup table of pairs L : {0, 1} × (G1)`×`, initializing the table to contain the

pair
(
ε∗,
〈
gRi
〉
i∈[d]

)
for a randomly chosen list of matrices 〈Ri〉i∈[d] ←

(
Z`×`p

)d
. Sim sends pp =(

g, gA0 , gA1
)

to the adversary.
Now, when the adversary A makes a query (φP (·), x̂) ∈ Φpoly(d) × {0, 1}`, for each i ∈ [0, d], let

Ci ∈ Z`×`p be the coefficients of P , so that for all M ∈ Z`×`p , P (M) =
∑d

i=0 Ci ·Mi. Sim first checks

if the pair
(
x̂`,
〈
gZi
〉
i∈[d]

)
exists in L, for some list of matrices 〈Zi〉i∈[d] ∈

(
Z`×`q

)d
. If not, he adds

the pairs
(

0,
〈
gUi
〉
i∈[d]

)
and

(
1,
〈
gVi
〉
i∈[d]

)
to the table L, and for each i ∈ [d] sets gZi = gUi if

x̂` = 0 and sets gZi = gVi if x̂` = 1. Then, Sim responds to the adversary’s query by returning

gN` ∈ (G`)
`×` where N = C0 ·

∏`
i=1 Ax̂i +

(∏d
i=1 Ci · Zi

)
·
(∏`−1

i=1 Ax̂i

)
.5 Finally, when A outputs

a bit b′, Sim also outputs b′.

If the MDHE challenge is of the form

(
gU
∗
,
〈
gS

i·U∗
〉
i∈[d]

, gV
∗
,
〈
gS

i·V∗
〉
i∈[d]

)
for some S ∈ Z`×`p ,

then on query (φP (·), x), for each i ∈ [d], Zi is of the form Si ·Ax` , which means that Sim responds

to the query with gN` ∈ (G`)
`×` where N = P (S) ·

∏`
i=1 Axi , and therefore Sim has simulated

Exptprf-rka
0 . If instead the MDHE challenge is of the form

(
gU
∗
,
〈
gUi
〉
i∈[d]

, gV
∗
,
〈
gVi
〉
i∈[d]

)
for

uniformly and independently distributed Ui,Vi ← Z`×`p across all i ∈ [d], then on query (φP (·), x),

Sim responds with gN` ∈ (G`)
`×` where N = C0 ·

∏`
i=1 Axi +

(∑d
i=1 Ci ·Ui

)
·
∏`−1
i=1 Axi if x` = 0

and N = C0 ·
∏`
i=1 Axi +

(∑d
i=1 Ci ·Vi

)
·
∏`−1
i=1 Axi if x` = 1, and therefore Sim has simulated

Expt`. Under the d-MDHE assumption, the claim follows.

Lemma 5.3. Under the 1-MDHE assumption, when Q = poly(λ) and d = poly(λ), for all j ∈ [2, `],∣∣Pr
[
Exptj−1 = 1

]
− Pr

[
Exptj = 1

]∣∣ is negligible.

5This can be computed using the multilinear map ê given gA0 , gA1 ,
〈
gZi

〉
i∈[d], and the coefficients αi for i ∈ [0, d].
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Proof. We construct a simulator Sim against a 1-MDHE challenger which givesQdMDHE challenges
rather than just one. A standard hybrid argument can be used to show that an adversary against
a 1-MDHE challenger which gives Qd challenges can be used to construct an adversary against a
1-MDHE challenger which gives one challenge, with a 1/(Qd) loss in advantage. When the 1-MDHE
challenger gives “real” challenges to the simulator, Sim behaves as a challenger for Experiment
Exptj , and when the 1-MDHE challenger gives “random” challenges, Sim behaves as a challenger
for Experiment Exptj−1.

The simulator Sim queries the 1-MDHE challenger to receive Qd challenges which we will

write in the form
(
gU
∗
,
〈
gUi,k

〉
i∈[d],k∈[Q]

, gV
∗
,
〈
gVi,k

〉
i∈[d],k∈[Q]

)
, where U∗,V∗ ∈ Rk`(Z`×`p ), and

Ui,k,Vi,k ∈ Z`×`p for each i ∈ [d] and k ∈ [Q]. The simulator must decide whether there exists for

each i ∈ [d] and k ∈ [Q] a matrix Si,k ∈ Z`×`p such that Ui,k = Si,k ·U∗ and Vi,k = Si,k ·V∗, or

whether all 2Qd+ 2 matrices in the set
{

U∗,V∗, 〈Ui,k〉i∈[d],k∈[Q] , 〈Vi,k〉i∈[d],k∈[Q]

}
are distributed

uniformly and independently.
The simulator embeds the 1-MDHE challenges by setting A0 = U∗ and A1 = V∗. The simulator

then creates a lookup table of pairs L : {0, 1}`−j+1 × (G1)`×`, initializing the table to contain the

pair
(
ε∗,
〈
gRi
〉
i∈[d]

)
for a randomly chosen list of matrices Ri ←

(
Z`×`p

)d
. Sim also keeps a counter

k ∈ Z, initialized to 1. Sim sends pp =
(
g, gA0 , gA1

)
to the adversary.

Now, when the adversary A makes a query (φP (·), x̂) ∈ Φpoly(d) × {0, 1}`, for each i ∈ [0, d], let

Ci ∈ Z`×`p be the coefficients of P , so that for all M ∈ Z`×`p , P (M) =
∑d

i=0 Ci ·Mi. Sim first checks if

the pair (x̂j−1,
〈
gZi
〉
) exists in L, for some list of matrices 〈Z〉i∈[d] ∈

(
Z`×`q

)d
. If not, he adds the pairs(

0 ‖ (x̂|j) ,
〈
gUi,k

〉
i∈[d]

)
and

(
1 ‖ (x̂|j) ,

〈
gVi,k

〉
i∈[d]

)
to the table L, and for all i ∈ [d] sets gZi = gUi,k if

x̂j−1 = 0 and sets gZi = gVi,k if x̂j−1 = 1, and then increments k by 1. Sim responds to the adversary’s

query by returning gN` ∈ (G`)
`×` where N = C0 ·

∏`
i=1 Ax̂i +

(∑d
i=1 Ci · Zi

)
·
(∏j−2

i=1 Ax̂i

)
. 6 Finally,

when A outputs a bit b′, Sim also outputs b′.

If the 1-MDHE challenges are of the form
(
gU
∗
,
〈
gSi,k·U

∗〉
i∈[d],k∈[Q]

, gV
∗
,
〈
gSi,k·V

∗〉
i∈[d],k∈[Q]

)
for

some uniformly and indepently chosen S1,1, . . . ,SQ,d ∈ Z`×`p , then on the kth (unique) query (φP (·), x),

for each i ∈ [d], Zi is of the form Si,k ·Axj−1 , which means that Sim responds to the query with gN` ∈
(G`)

`×` where N = C0 ·
∏`
i=1 Axi+

(∑d
i=1 Ci · Zi

)
·Axj−1 ·

∏j−2
i=1 Axi , and therefore Sim has simulated

Exptj , with Si,k playing the role of freshly chosen Zi (consistent with the suffix of x). If instead the

1-MDHE challenges are of the form
(
gU
∗
,
〈
gUi,k

〉
i∈[d],k∈[Q]

, gV
∗
,
〈
gVi,k

〉
i∈[d],k∈[Q]

)
for uniformly and

independently distributed Ui,k,Vi,k ← Z`×`p across all i ∈ [d] and k ∈ [Q], then on the kth query

(φP (·), x), Sim responds with gN` ∈ (G`)
`×` where N = C0 ·

∏`
i=1 Axi +

(∑d
i=1 Ci · Zi

)
·
∏j−2
i=1 Axi ,

and therefore Sim has simulated Exptj−1, with Ui,k playing the role of the freshly chosen Zi if
xj−1 = 0, and Vi,k playing the role of the freshly chosen Zi if xj−1 = 1 (consistent with the suffix
of x).

Lemma 5.4. Pr[Expt1 = 1] = Pr
[
Exptprf-rka

1 = 1
]
.

Proof. Recall that in Expt1, on query (φP (·), x) ∈ Φpoly(d) × {0, 1}`, the challenger responds with

6This can be computed using the multilinear map ê given gA0 , gA1 ,
〈
gZi

〉
i∈[d], and the coefficients αi for i ∈ [0, d].
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gN` ∈ (G`)
`×` where N = C0 ·

∏`
i=1 Axi +

∑d
i=1 Ci ·Ui, where each of U1, . . . ,Ud ∈ Z`×`p is uniformly

and independently distributed for distinct input queries x. Since there exists some j ∈ [d] for which
Cj is full rank, it follows that Cj ·Uj and hence N is distributed as a uniform element in Z`×`p ,

independently for each input query x ∈ {0, 1}`.

Applying Lemmas 5.2–5.4 yields Theorem 5.1.

6 Conclusions

We construct the first lattice-based PRFs secure against a class of related-key attacks from an
(almost) linear class of functions. We achieve RKA security under the standard (super-polynomial)
LWE assumption for a restricted linear class of related-key functions and this result is comparable
to the DDH-based RKA-secure PRF construction by Bellare and Cash [6]. Under the powerful
multilinear map abstraction [19], we construct RKA-secure PRFs against a large and natural class
of affine related-key deriving functions with minimal restrictions. We believe this to be the most
expressive affine class of transformations attainable under the Bellare-Cash framework. We also
achieve the weaker notion of unique-input RKA security for an affine class of related-key deriving
functions by considering the LWE-based key homomorphic PRF by Boneh et al. [13]. We show that
by working with the proof of pseudorandomness and utilizing the algebraic structure of the PRF,
we can overcome restrictions on the related-key class that are necessary to apply the Bellare-Cash
framework. Finally, we show how, under the d-MDHE assumption in the presence of multilinear
maps, we can achieve RKA security against unique-input adversaries for the class of degree-d
polynomials. Our work on constructing new RKA-secure PRFs leads to several interesting open
problems:

� Can we construct LWE-based PRFs under the Bellare-Cash framework for a class less restrictive
than Φlin∗? The only known LWE-based PRFs [4, 13] both require rounding and have “error
terms” in proofs that have to be carefully dealt with. This will require a more careful
application of the Bellare-Cash framework.

� Can we construct unique-input RKA-secure PRFs from other LWE-based PRFs by Banerjee
et al. [4] and (more recently) Banerjee and Peikert [3]?

� Can we construct RKA-secure PRFs against unique-input adversaries for classes of polynomials
from more standard assumptions such as LWE or DLIN?
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A Security of the d-MDHE Assumption in the Generic Group
Model

Recall the definition of the d-MDHE problem, defined in Definition 2.6, and the d-MDHE assumption
for which we use to prove the security of Theorem 5.1. In this section, we work with a generalized form
of the the d-MDHE problem, defined as follows. Consider a sequence of groups ~G = (G1, . . . ,G`),
each of prime order p, with a set of bilinear maps êi for i ∈ [1, `− 1], and a generator g of G1.
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Definition A.1 (Multilinear Diffie-Hellman Exponent, generalized). The d-Multilinear Diffie-
Hellman Exponent (d-MDHE) problem in the presence of a graded `-linear map, the sequence of
groups ~G, and {êi}i∈[1,`−1], for any positive integers m,n where n ≥ `, is to distinguish between the
two distributions{

gA, gAS, . . . , gASd
}
A←Zm×np ,S←Zn×np

and
{
gU

(0)
, . . . , gU

(d)
}
U(0),...,U(d)←Zm×np

.

Note that the Definition 2.6 is the assumption that the above (generalized) problem is com-
putationally hard when m = 2n. In what follows, we show that when d` ≤ n and p is sufficiently
large, any adversary restricted to the generic group model has a negligible advantage in solving the
d-MDHE problem. Although Theorem 5.1 relies on the d-MDHE assumption without the extra
restriction that d` ≤ n, we note that the proof of Theorem 5.1 can be modified slightly to hold
for when all matrices are drawn from Zn×np instead of Z`×`p . In other words, we can show that for
d` ≤ n, under the d-MDHE assumption, the PRF FDLIN over n× n matrices is RKA-secure against
unique-input adversaries for the class Φpoly(d) over n× n matrices.

A.1 Definitions

Matrices and sets. For an arbitrary matrix M, let Mi,j represent entry (i, j) of M. Let
A,U(0), . . . ,U(d) ∈ Zm×np and S ∈ Zn×np . Consider the set of variables comprising entries from U(k)

denoted as U =
{

U
(k)
i,j : i ∈ [m], j ∈ [n], k ∈ [0, d]

}
. Similarly, define the set S = {Ai,j}i∈[m],j∈[n] ∪

{Si,j}i,j∈[n] for entries of the matrices A and S.

Polynomials. For an arbitrary set S, we write P ∈ Fp[S] if there exist integers α, β1, . . . , βα ≥ 0,
scalars c1, . . . , cα ∈ Fp, and variables Xi,j ∈ S for each i ∈ [α] and j ∈ [βi] such that

P (S) =
α∑
i=1

ci

βi∏
j=1

Xi,j . (A.1)

We refer to Equation A.1 as a standard form of P if c1, . . . , cα are non-zero, and the sets
{X1,j}j∈[β1], . . . , {Xα,j}j∈[βα] are all distinct.

Definition A.2 (Induced polynomial). Let P ∈ Fp[U] and Q ∈ Fp[S]. We say that P induces Q, or
that Q is the induced polynomial of P , if it is the case that if U(i) = ASi for all i ∈ [0, d], then for
all A ∈ Zm×np and S ∈ Zn×np , P (U) ≡ Q(S).

Definition A.3 (U-terms and S-terms). If P ∈ Fp[U] and integers α, β1, . . . , βα ≥ 0, scalars
c1, . . . , cα ∈ Fp, and variables X1,1, . . . , Xα,β are the variables of the standard form of P , then for

each i ∈ [α], we will refer to the expression
∏βi
j=1Xi,j as a U-term of P . If instead P ∈ Fp[S], then

for each i ∈ [α], we will refer to the expression
∏βi
j=1Xi,j as a S-term of P .

S-terms. Let P ∈ Fp[U] and Q ∈ Fp[S] be the induced polynomial of P . Note that each S-term of
Q can be written in the form

`′∏
k=1

A
i
(k)
1 ,i

(k)
2

 dk∏
j=2

S
i
(k)
j ,i

(k)
j+1

 (A.2)
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for some integer `′ ≥ 0, d1, . . . , d`′ ≤ d, and indices
{
i
(k)
j

}
k∈[`′],j∈[dk+1]

. Note also that every product

of terms written in the form of Equation A.2 can be interpreted as a S-term of Q.

Definition A.4 (Index set). Let P ∈ Fp[U], let Q ∈ Fp[S] be the induced polynomial of P , and let

ρ be a S-term of Q. Let `′ ≤ `, d1, . . . , d`′ ≤ d, and indices i
(k)
j for each k ∈ [`′] and j ∈ [d`′ + 1]

be a setting of the variables of ρ as in Equation (A.2). An index set of the S-term ρ is a set of `′

tuples, where for each k ∈ [`′], the kth tuple contains the indices
(
i
(k)
1 , . . . , i

(k)
dk+1

)
. By definition,

every S-term has at least one index set.

Definition A.5 (Well-formed S-term). Let P ∈ Fp[U], let Q ∈ Fp[S] be the induced polynomial of

P , let ρ be a S-term of Q, and let `′, d1, . . . , d`′ , and indices
{
i
(k)
j

}
k∈[`′],j∈[dk+1]

be a setting of the

variables of ρ as in Equation (A.2). Let S =
⋃`′

k=1

{
i
(k)
2 , . . . , i

(k)
dk

}
. We say that a the S-term ρ is

well-formed if the following is true:

Property 1: The elements of the set S are all distinct, and

Property 2: For each k ∈ [`′], i
(k)
dk+1 6∈ S.

A.2 Useful Lemmas

The following lemma follows from the definition of a well-formed S-term.

Lemma A.6. Let P ∈ Fp[U] be a degree-` polynomial and let Q ∈ Fp[S] be the induced polynomial
of P . Every well-formed S-term of Q has a unique index set.

Proof. Let ρ be a well-formed S-term of the form
∏`′

k=1

(
A
i
(k)
1 ,i

(k)
2

(∏dk
j=2 S

i
(k)
j ,i

(k)
j+1

))
for some

`′ ∈ [0, `], d1, . . . , d`′ ∈ [d], and for each k ∈ [`′] and j ∈ [dk + 1], indices i
(k)
j ∈ [n]. By definition,

the set π =
{(
i
(1)
1 , . . . , i

(1)
d1+1

)
, . . . ,

(
i
(`′)
1 , . . . , i

(`′)
d`′+1

)}
is an index set of ρ.

Let π′ 6= π be another index set of ρ. The proof focuses on a maximal subsequence of indices
(denoted γ∗) as part of some tuple in both π and π′. Let γ, γ′, γ∗, γ′pre, γpost, γ

′
post be (possibly empty)

tuples such that γ ∈ π and γ′ ∈ π′ can be written in the form

γ = γ∗ ‖ γpost

γ′ = γ′pre ‖ γ∗ ‖ γ′post,

and the length of γ∗ is maximized. Without loss of generality, we will assume that the tuple γ is
such that it is not the case that both γpost and γ′post are empty. To see why such a tuple γ exists,
note that if no such tuple existed, then for every tuple in π, its elements form a subsequence of
some tuple in π′, which contradicts the assumption that π 6= π′, or that both π and π′ are valid
index sets of ρ.

There are two cases to consider, and we will show that each leads to a contradiction based on
the well-formedness of ρ. Let r be the last entry of γ∗.

Case 1: If either γpost 6= ∅ and γ′post = ∅, or γpost = ∅ and γ′post 6= ∅, then there must exist a tuple in

π, integers k ∈ [`′], dk ∈ [d], and j ∈ [dk], where the tuple is of the form
(
i
(k)
j , . . . , i

(k)
dk+1

)
with

r = i
(k)
j . This contradicts Property 2 of the well-formedness of ρ.
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Case 2: If both γpost 6= ∅ and γ′post 6= ∅, then there must exist a pair of tuples in π, both of which
contain r as an entry. This contradicts Property 1 of the well-formedness of ρ.

We have contradicted the assumption that π′ 6= π. The claim follows.

Lemma A.7. Let P ∈ Fp[U] be a degree-` polynomial, and let Q ∈ Fp[S] be its induced polynomial.
If d` ≤ n, p > `, p is prime, and P 6≡ 0, then Q 6≡ 0.

Proof. Assuming that P 6≡ 0, let τ be an arbitrary U-term of P , and let Q′ ∈ Fp[S] be the
polynomial induced by τ .

Claim A.8. If d` ≤ n, then there exists a well-formed S-term ρ in Q′.

Proof. Let τ be of the form
∏`′

k=1 U
(dk)
ik,jk

for some `′ ∈ [0, `], d1, . . . , d`′ ∈ [d], i1, . . . , i`′ ∈ [m], and
j1, . . . , j`′ ∈ [n]. Then, the set of all S-terms in Q′ is the set of all S-terms which can be written in

the form of Equation (A.2), where for each k ∈ [`′], i
(k)
1 = ik and i

(k)
dk+1 = jk, and i

(k)
2 , . . . , i

(k)
dk
∈ [n].

To pick a well-formed S-term, we must ensure that, for k ∈ [`′] and j ∈ [2, dk], each i
(k)
j is picked

distinctly from the set [n] \ {jk}k∈[`′]. Note that the set [n] \ {jk}k∈[`′] has at least n− `′ ≥ n− `
elements, and we must pick elements from this set for at most `′(d− 1) ≤ `(d− 1) indices. If d` ≤ n,
`(d− 1) ≤ n− `′, which implies that the indices can be picked to form a well-formed S-term, which
implies the claim.

Claim A.9. Let ρ be a well-formed S-term in the induced polynomial of τ . Let Γ be the set of all
U-terms in P whose induced polynomial contain ρ. Then, Γ = {τ}.

Proof. Let
{(
i
(1)
1 , . . . , i

(1)
d1+1

)
, . . . ,

(
i
(`′)
1 , . . . , i

(`′)
d`′+1

)}
be an index set of ρ, for some `′ ∈ [0, `],

d1, . . . , d`′ ∈ [d], and indices i
(k)
1 , . . . , i

(k)
dk+1 ∈ [n] for each k ∈ [`′]. Then, the U-term τ which contains

the S-term ρ must be of the form

τ =
`′∏
k=1

U
(dk)

i
(k)
1 ,i

(k)
dk+1

.

Since this index set for ρ is unique by Lemma A.6, it follows that this U-term is unique, as well,
which proves the claim.

Claim A.10. If p > ` and p is prime, and ρ is a well-formed S-term of τ , then the scalar associated
with ρ in τ is non-zero.

Proof. Let τ be of the form
∏`′

k=1

(
U

(dk)
ik,jk

)ek
for `′ ∈ [`], and for each k ∈ [`′], distinct triples of

indices (ik, jk, dk) ∈ [n]× [n]× [d], and ek ∈ [`]. Then, the scalar associated with each well-formed

S-term of the polynomial induced by τ is equal to
∏`′

k=1(ek!). To see this, note that ρ has a unique

index set of the form
{(
i
(k)
1 , . . . , i

(k)
dk+1

)}
k∈[`′]

, for indices i
(k)
j for each k ∈ [`′] and j ∈ [dk + 1],

where i
(k)
1 = ik and i

(k)
dk+1 = jk. The number of times ρ appears in the polynomial induced by τ is

exactly the number of ways to bijectively map each tuple of the index set with the set [`′] such that

the kth tuple, of the form
(
i
(k)
1 , . . . , i

(k)
dk+1

)
, is such that i

(k)
1 = ik and i

(k)
dk+1 = jk. The only such

maps which can exist are permutations of duplicate elements in the index set, which is given by the
expression

∏`′

k=1(ek!). Since p > `, p is prime, and ek ≤ ` for each k ∈ [`′], this expression is not a
multiple of p, and hence it is non-zero in Fp.
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Note that the scalar associated with the S-term ρ (whose existence is ensured by Claim A.8)
in the polynomial induced by τ is non-zero, by Claim A.10. Therefore, since the scalar associated
with τ is also non-zero in Fp, and since p is prime, the scalar associated with ρ in Q must also be
non-zero in Fp. Therefore, we conclude that Q 6≡ 0, which proves the lemma.

A.3 The Main Theorem

Theorem A.11. Let p, s, `,m, n, d be positive integers such that p > `, p is prime, s = dlog2 pe,
and d` ≤ n. Let A be a probabilistic polynomial time adversary. Let G1, . . . ,G` be groups of order
p, along with pairing functions êi,j : Gi ×Gj → Gi+j for all i, j such that i+ j ≤ `. Let ζ0, . . . , ζd
be a set of random encodings, where each ζi : Gi → {0, 1}s. The adversary is given access to an
oracle to compute the group action for each group Gi as well as an oracle to compute the pairing
function êi,j. Let q be the number of queries the adversary makes to these oracles. Then,∣∣∣∣Pr

[
A
(
p, ζ0

(
gU

(0)
)
, . . . , ζ0

(
gU

(d)
))

= b
]
− 1

2

∣∣∣∣ ≤
(
q+mn(d+1)

2

)
`

p

where a bit b ∈ {0, 1} is chosen randomly and if b = 0, then U(i) = ASi for A and S sampled
uniformly and independently from Zm×np and Zn×np , respectively, and if b = 1, then U(0), . . . ,U(d)

are sampled uniformly and independently from Zm×np .

Proof. The simulator will keep ` lists L1, . . . , L` of distinct polynomials mapping to random values
(for each of the ` levels of encodings). The list Li : Gi → {0, 1}s is initialized to contain a map of

each variable in the set
{
gA, . . . , gASd

}
to a random string in {0, 1}s. We will use R(Li) ⊂ {0, 1}s

to denote the set of random strings that have already been assigned to in group Gi.
When A makes a query to the oracle for a group operation in Gi on two random encodings

ζi(x) and ζi(y), the simulator performs polynomial addition on x and y to obtain the polynomial
z. If a random encoding for z is already defined in the list Li, then the simulator returns this
string. Otherwise, the simulator picks a fresh random string in {0, 1}s \ R(Li) to represent ζi(z),
returning this string. Similarly, when A makes a query to the oracle for a pairing of two random
encodings ζi(x) and ζj(y), the simulator performs polynomial multiplication on x and y to obtain
the polynomial z. If a random encoding for z is already defined in the list Li+j , then the simulator
returns this string. Otherwise, the simulator picks a fresh random string in {0, 1}s \ R(Li+j) to
represent ζi+j(z), returning this string. It follows that the simulation is perfect unless the chosen
random variables for A ∈ Zm×np and S ∈ Zn×np result in an equality relation between intermediate
values that is not an equality of polynomials. Furthermore, note that in a perfect simulation,

the distribution of the random strings ζ0

(
gU

(0)
)
, . . . , ζ0

(
gU

(d)
)

when b = 0 is identical to their

distribution when b = 1, and hence the adversary has advantage 1/2 in this case.
The adversary is given mn(d + 1) random encodings from the challenger, and can receive at

most q +mn(d+ 1) random encodings after q oracle queries. Hence, there are at most
(
q+mn(d+1)

2

)
distinct pairs which represent polynomials that the adversary may check for equality. Note that
each equality check can be formulated as a non-zero degree-` polynomial P ∈ Fp[U]. Hence, by
Lemma A.7, the induced polynomial Q is also non-zero. By the Schwartz-Zippel lemma, since Q is
a degree-` non-zero polynomial, the probability that a random assignment of variables results in the
polynomial evaluating to 0 is at most `/p. The claim follows via a union bound over all distinct
pairs of polynomials that the adversary may check for equality.
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