
Improved Constructions of PRFs Secure Against
Related-Key Attacks

Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

Stanford University

Abstract. Building cryptographic primitives that are secure against related-
key attacks (RKAs) is a well-studied problem by practitioners and theoreti-
cians alike. Practical implementations of block ciphers take into account
RKA security to mitigate fault injection attacks. The theoretical study
of RKA security was initiated by Bellare and Kohno (Eurocrypt ’03).
In Crypto 2010, Bellare and Cash introduce a framework for building
RKA-secure pseudorandom functions (PRFs) and use this framework
to construct RKA-secure PRFs based on the decision linear and DDH
assumptions.
We build RKA-secure PRFs by working with the Bellare-Cash framework
and the LWE- and DLIN-based PRFs recently constructed by Boneh, Lewi,
Montgomery, and Raghunathan (Crypto ’13). As a result, we achieve
the first RKA-secure PRFs from lattices. In addition, we note that our
DLIN-based PRF (based on multilinear maps) is the first RKA-secure
PRF for affine classes under the DLIN assumption, and the first RKA-
secure PRF against a large class of polynomial functions under a natural
generalization of the DLIN assumption. Previously, RKA security for
higher-level primitives (such as signatures and IBEs) were studied in
Bellare, Paterson, and Thomson (Asiacrypt ’12) for affine and polynomial
classes, but the question of RKA-secure PRFs for such classes remained
open.
Although our RKA-secure LWE-based PRF only applies to a restricted
linear class, we show that by weakening the notion of RKA security, we
can handle a significantly larger class of affine functions. Finally, the
results of Bellare, Cash, and Miller (Asiacrypt ’11) show that all of our
RKA-secure PRFs can be used as building blocks for a wide variety of
public-key primitives.

Keywords: related-key attacks, pseudorandom functions, learning with
errors.

1 Introduction

The usual notions of security for cryptographic primitives do not address the possibility
that an attacker could adversarially modify the internal state of hardware devices that



2 Kevin Lewi, Hart Montgomery, and Ananth Raghunathan

implement the primitive. Indeed, fault injection attacks (and other types of side-channel
attacks including cold-boot attacks [22], timing attacks [24, 16], and power analysis
attacks [27]) have shown that our traditional security definitions are not sufficient for most
practical implementations of provably secure cryptographic primitives [12, 13, 33, 6].

To deal with fault injection attacks, cryptographers have developed the notion of
related-key attack (RKA) security. RKA security definitions [9] capture the following
notion: in addition to allowing the adversary to make input queries on the primitive for
a randomly chosen secret key, the adversary is allowed to make input queries on the
primitive for adversarially chosen “related-key deriving” functions φ ∈ Φ of a randomly
chosen secret key (where Φ is a function family specified in advance). This notion can be
used to show that certain classes of tampering attacks are ineffective against primitives
proven secure in the presence of RKAs.

In the past few years, there has been much work in constructing RKA-secure primi-
tives [7, 8, 3, 11, 35, 10]. In addition, RKA security is also of interest to practitioners,
particularly in the design of block ciphers [19, 23, 36]. In this work, we will focus our
attention on building one of the most basic of the RKA primitives—pseudorandom func-
tions (PRFs). Not only do PRFs find applications in many real-world implementations
where side-channel attacks are possible (and hence RKA security becomes relevant) [6],
but RKA-secure PRFs are also known to imply RKA security for a wide range of more
advanced primitives, including signatures, identity-based encryption, and both public-key
and private-key chosen ciphertext secure encryption [8].

1.1 Background and Related Work

Bellare and Cash [7] developed the first RKA-secure PRF for a non-trivial class of
functions. Instantiations prior to [7] on RKA-secure PRFs required ideal ciphers, random
oracles, or non-standard assumptions [26, 9]. In addition, Bellare and Cash develop a
novel framework (which we call the BC framework) for building RKA-secure PRFs, and
show how the DDH assumption implies an RKA-secure PRF for the class Φlin = {φa :
Zmq → Zmq | φa(k) = k + a}a∈Zmq , the class of all linear transformations to the key.
Additionally, they construct an RKA-secure PRF under the DLIN assumption [34, 30]
for an interesting multiplicative class Φ (where related keys are derived from scalar
multiples of components of the key).

Bellare et al. [8] explore the possibilities of transferring RKA security from one
primitive to another (while preserving the class Φ of related-key deriving functions). In
particular, they show that RKA-secure PRFs can be used to construct a wide variety of
higher-level RKA-secure primitives. Thus, improvements in building RKA-secure PRFs
have wide applicability to RKA-secure public-key cryptographic primitives.

Applebaum et al. [3] show how to build RKA-secure symmetric encryption from
a variety of hardness assumptions for linear related-key attacks. Wee [35] presents
chosen ciphertext RKA-secure public-key encryption scheme constructions from the
DBDH and LWE assumptions, also for linear related-key attacks. Finally, Bellare et
al. [11] show how to build RKA-secure variants from a variety of primitives discussed
in [8] for more expressive classes Φ including affine and polynomial function families.
However, constructing RKA-secure PRFs for affine or polynomial Φ is notably left open.
Concurrently, Bellare et al. [10] build RKA-secure signature schemes against related-key
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deriving functions drawn from such classes of polynomials. Their construction relies
on RKA-secure one-way functions which appear to be easier to build under standard
assumptions (as opposed to RKA-secure PRFs).

PRFs are extremely well-studied primitives and have been built from a wide variety
of assumptions [29, 18, 25, 15, 5, 14]. Currently known RKA-secure PRFs only consider
the Naor-Reingold [29] and Lewko-Waters [25] PRFs. We note that PRFs constructed
by Boneh et al. [14] satisfy an additional “key homomorphism” property which we
find useful in constructing RKA-secure PRFs. Our constructions are based on the PRFs
considered in this work.

1.2 Our Contributions

Lattice-based RKA-secure PRFs. We present the first lattice-based PRFs secure against
related-key attacks. Our construction achieves RKA security under the standard LWE
assumption against the class of related-key functions Φlin∗ = {φa : Zmq → Zmq |
φa(k) = k+a}a∈( qp )Zmq over the key spaceK = Zmq . The class ( qp )Zmq here denotes the
vectors in Zmq whose entries are all multiples of q/p (where p divides q). This linear RKA
class Φlin∗ is a restricted case of the linear class in [7, Section 6], but our construction
offers two advantages: it is the first LWE-based RKA-secure PRF (as opposed to the
DDH-based construction in [7]) and its proof does not require a simulator that runs in
time exponential in the input length.1 Ideally we would like to address RKA security
for the entire class of linear key shifts, but we only achieve a weaker notion of security.
However, these restrictions are quite plausible as they translate to an adversary that can
inject faults into the higher order bits of the key.2

RKA security against an affine class of related keys. Next, we show how the powerful
multilinear map abstraction by Garg et al. [20] along with the DLIN assumption in this
abstraction can be used to construct PRFs with RKA security against a very large
and natural class of affine key transformations Φaff = {φC,B : Zm×`p → Zm×`p |
φC,B(K) = CK+B} over the key spaceK = Zm×`p . For Φaff , we require that C comes
from a family of invertible matrices and that Φaff be claw-free—for all φ1, φ2 ∈ Φaff

and K ∈ K, φ1(K) 6= φ2(K).
Both restrictions arise from a technical requirement under the BC framework. As

noted in [7, 11], some restrictions must be placed on Φaff in order for PRFs to achieve
RKA security against them (for example, Φaff cannot include constant functions φ(K) =
B). Hence, our class Φaff is essentially the most expressive affine class of transformations
for which RKA PRF security is still attainable under the Bellare-Cash framework. In fact,
there are no known PRFs which are RKA-secure against a class which does not have the
claw-free restriction. Bellare et al. [11] constructed higher-level primitives RKA-secure

1 We note that we require the LWE assumption to hold over superpolynomially-sized modulus q,
but this is a well-studied and widely-used assumption [31, 5, 1, 14].

2 We note that when q and p are powers of 2, Φlin∗ captures all functions that perform linear
shifts on the entries of the key that do not modify the log(q/p)-least significant bits of each
entry.
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against affine classes, but left open the problem of constructing such a PRF (for which
we provide an answer).

Unique-input RKA security against an affine class. We note, however, that the as-
sumption that there exists an instantiation of the Garg et al. multilinear map abstrac-
tion [20] for which DLIN holds is a fairly strong assumption. This raises the following
question: Can we achieve a similar result for RKA PRF security against affine trans-
formations from a more standard assumption? We answer this question in the affirma-
tive by considering a slightly weaker notion of RKA security, denoted unique-input
RKA security, where adversary queries are restricted to unique inputs. We build RKA-
secure PRFs from the LWE assumption that can handle the class of transformations
Φln-aff = {φC,B : φC,B(K) = CK + B}, where C is a full-rank “low-norm” matrix
and B is an arbitrary matrix in Zm×mq from the LWE assumption. We observe that under
this weaker notion of security, our class is significantly more expressive than our first
result from lattices because it allows for the addition of arbitrary vectors. However, this
requires us to work outside the Bellare-Cash framework. We leave it as an open problem
to construct “truly” RKA-secure PRFs from LWE (or other standard assumptions, such
as DDH) for an affine class of key transformations.

Unique-input RKA security against a class of polynomials. We further explore the
connection between key homomorphism and unique-input RKA security by using the
multilinear map abstraction to tackle a polynomial class of related-key functions. More
specifically, we consider the class of polynomials Φpoly(d) of bounded degree d over
matrices Zm×mq and consider a natural exponent assumption over multilinear maps called
the Multilinear Diffie-Hellman Exponent (MDHE) assumption. For technical reasons, we
require that at least one of the polynomial’s non-constant coefficient matrices is full-rank.
This natural restriction simply ensures that the output of the polynomial is sufficiently
random given a uniformly drawn input of a special form. We note that the MDHE
assumption is a natural and fairly plausible generalization of the DLIN assumption.

Finally, we can apply the results of [8] to get Φ-RKA security for signatures, identity-
based encryption, and public and private key CCA encryption from our Φ-RKA-secure
PRFs.

1.3 Our Techniques

At a high level, we use the Bellare-Cash framework with the (LWE- and DLIN-based)
key homomorphic PRFs from Boneh et al. [14] to construct RKA-secure PRFs against
the classes Φlin∗ and Φaff . Below, we give an outline of the framework and note that key
homomorphic PRFs are a natural starting point due to the malleability requirement of
the framework.

Bellare-Cash framework. The only known construction of RKA-secure PRFs to date
is that of Bellare and Cash [7]. In their framework, Bellare and Cash identify sufficient
properties for constructing an RKA-secure PRF. They first consider PRFs F : K×X →
Y that are key malleable—PRFs which have an efficient algorithm (denoted a transformer
T) that when given an input (φ, x) ∈ Φ × X and oracle access to F (k, ·) computes
F (φ(k), x). In addition, T must satisfy a uniformity property, namely, when F (k, ·) is
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replaced with a random function f(·), the outputs of T on inputs (φ1, x1), . . . , (φQ, xQ)
for distinct x1, . . . , xQ are uniform and independently distributed. The framework also
requires the existence of a key fingerprint—an input w ∈ X such that for all k ∈ K and
distinct φ1, φ2 ∈ Φ, F (φ1(k), w) 6= F (φ2(k), w).

For a class Φ with a suitable key malleable PRF, a fingerprint w, and a collision-
resistant hash function that satisfies a simple compatiblity property Hcom (see Definition
2.8), under the Bellare-Cash framework, the authors show that the PRF Frka(k, x) =
F (k,Hcom(x, F (k,w))) is Φ-RKA-secure.

Applying the BC framework to the DLIN-based PRF. Our starting point is the con-
struction of a DLIN-based key homomorphic PRF by Boneh et al. [14], who note that
key homomorphic PRFs are key malleable. In this work, we generalize this PRF to
operate with the key space K = Zm×`p instead of Z`p. The PRF has public parameters
A0,A1 ∈ Z`×`q . On input x, the PRF is of the form (g`)

W for W = KP where
P ∈ Z`×`p is the publicly computable matrix Ax`Ax`−1

· · ·Ax1
(that only depends on

the bits of x) and g` is the generator of a group with a multilinear map. This additional
algebraic structure allows us to consider the class of affine related-key deriving functions
of the form CK + B for matrices C ∈ Zm×mq and B ∈ Zm×`q . The pseudorandomness
of the PRF holds by a straightforward hybrid argument, noting that the rows of K are
now identical to independent keys of the original PRF.

Working in the exponent, given access to an oracle that computes W and an input
φC,B, it is easy to construct a transformer that computes W′ = CW + BP. From some
simple algebra, one can verify that this indeed computes the exponent W′ corresponding
to FDLIN(φ(K), x). In addition, as long as C is restricted to the set of full-rank matrices, it
follows that the transformer described above outputs uniform matrices if W corresponds
to the outputs of a random function. From this, the rest of the BC framework can be
applied and is shown in Section 3.2. We note here that the restriction that Φ is claw-free
seems to be inherently required in applying the BC framework (here, we require it
in constructing a suitable fingerprint), and we do not overcome this limitation in our
construction either.3

Applying the BC framework to the LWE-based PRF. Recollect that Boneh et al. con-
struct an “almost” key homomorphic LWE-based PRF F which on input x is of the form
bPkcp, where P = Ax`Ax`−1

· · ·Ax1 . (Here, bxcp for x ∈ Zq denotes multiplying x
by p/q and rounding the result to Zp.) Unfortunately, the “almost”-ness of the key homo-
morphism disallows a direct argument of key malleability. Furthermore, a transformer
which is “almost” key malleable (in the same sense) is still insufficient for instantiating
the BC framework.

This limitation can be overcome by observing that F (k1, x) + F (k2, x) = F (k1 +
k2, x) if the entries of either k1 or k2 are all multiples of q/p. This property is sufficient
to show that F is key malleable with respect to the class Φlin∗ , where k2 is required to
be an element of ( qp )Zmq . Additionally, this restriction is needed show that any fixed
input w ∈ {0, 1}` acts as a key fingerprint for F under the class Φlin∗ . It seems likely

3 However, in [8], the authors overcome this barrier and achieve RKA security for PRGs, not
PRFs, against a class Φ which is not claw-free.
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that this restriction is in fact necessary for applying the BC framework, leaving this the
most expressive class achievable for the LWE-based PRF F .

One natural question to ask is whether the Banerjee et al. [5] LWE-based PRF can be
used instead of F . We note that their PRF is not key homomorphic and hence the above
approach does not apply. However, we leave open the question of achieving unique-input
RKA security for their PRF (see Section 6).

Unique-input adversaries. As was observed by Bellare and Cash, key malleability is
intuitively useful in constructing RKA security because it allows us to simulate F (φ(k), ·)
without access to the key k but also leads to a simple related-key attack against any class
that contains the functions φid (the identity function) and any φ′ 6= φid. The difficulty in
achieving security lies in the adversary’s ability to request multiple related-key deriving
functions on the same input x. Given φid, to attack the pseudorandomness, the adversary
can run the transformer for φ′ himself and compare the output of the transformer to the
output of the oracle on (φ′, x). Thus, Bellare and Cash require additional tools.

However, the notion of key malleability suffices to show security against unique-input
adversaries, where the adversary’s queries are restricted to distinct x’s. In extending
the RKA-secure LWE-based PRF to a class of affine functions, as discussed earlier
in this section, the presence of the rounding does not directly imply key malleability.
However, in Section 4, we work through the proof of security of the pseudorandomness
of F , along the lines of the proof in [14], to consider its RKA security against the
larger class Φln-aff . We show that the structure of the PRF allows us to simulate, in
addition to PRF queries on input x, RKA queries for functions φ ∈ Φln-aff . As in [14],
the proof works through several hybrid arguments that modify a challenger from a truly
random function to a pseudorandom function that also provides answers to RKA queries
(φ, x) ∈ Φln-aff × {0, 1}`.

The low-norm restriction on the matrix C in φC,B ∈ Φln-aff is required to ensure
that when using LWE challenges in the hybrids, the noise does not grow larger than
what the rounding allows. In the final hybrid, the adversary interacts with uniform and
independently chosen outputs corresponding to inputs xi. As long as the adversary is
restricted to unique inputs, this interaction is identical to the game where the adversary
receives uniform and independent (consistent) values on queries (φ, x). This is sufficient
to show RKA security. Whether we can take advantage of the algebraic structure of other
pseudorandom functions to directly prove unique-input RKA security is an interesting
question.

Unique-input security against a class of polynomials. We have shown how under
the DLIN and LWE assumptions we can build RKA-secure PRFs for classes of affine
functions, but unfortunately we do know how to extend these results to handle classes of
polynomials. However, in Section 5, we show that the PRF FDLIN (defined in Section 3.2)
is RKA-secure against unique-input adversaries under the (new) d-MDHE assumption
(see Definition 2.5) for a class of degree-d polynomials.

For integers `, d, and a prime p, we consider the class Φpoly(d) consisting of all degree-
d polynomials over Z`×`p of the form P (K) =

∑d
i=0 Ci ·Ki, where C0, . . . ,Cd,K ∈

Z`×`p and at least one of C1, . . . ,Cd is full rank. To prove the RKA security of FDLIN

against unique-input adversaries, we consider a series of hybrid experiments which
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respond to queries (φP (·), x) ∈ Φpoly(d) × {0, 1}`, where P (S) =
∑d
i=0 Ci · Si, by

choosing d uniformly random, independent secrets K1, . . . ,Kd and computing the
weighted sum C0 +

∑d
i=1 Ci ·Ki, as opposed to choosing a single uniformly random

secret S and computing P (S). We show how an adversary which distinguishes between
these two cases can be used to break the d-MDHE assumption, and then we use the
techniques used to prove the pseudorandomness of FDLIN to complete the argument.

The additional requirement of at least one of C1, . . . ,Cd being full rank is only
needed to ensure that a sufficient amount of entropy from the secret key will remain in
the output of the PRF. Note that this restriction on Φpoly(d) rules out polynomials P for
which the output of P on randomly chosen key can be predicted (as an example consider
constant polynomials P (K) = C for some fixed C ∈ Z`×`p ), for which achieving
RKA security is impossible. We believe Φpoly(d) captures what is essentially the most
expressive class of bounded-degree polynomials for RKA-secure PRFs.

Organization. In Section 2 we introduce preliminary notation and definitions. In Sec-
tion 3 we construct RKA-secure LWE- and DLIN-based PRFs using the BC framework.
Then, in Section 4, we give an LWE-based RKA-secure PRF against unique-input adver-
saries for an affine class of transformations. In Section 5, we show how the DLIN-based
PRF is secure against unique-input adversaries where the related-key attacks come from
a class of bounded-degree polynomials. We conclude in Section 6. In the full version,
we give additional preliminaries, missing proofs, and more details.

2 Preliminaries

2.1 Notation

Rounding. We define b·c to round a real number to the largest integer which does not
exceed it. For integers q and p where q ≥ p ≥ 2, we define the function b·cp : Zq → Zp
as bxcp = i where i · bq/pc is the largest multiple of bq/pc which does not exceed x.
For a vector v ∈ Zmq , we define bvcp as the vector in Zmp obtained by rounding each
coordinate of the vector individually.

When p | q, we let ( qp )Zq denote the subgroup of Zq comprising the set {(q/p) · x |
x ∈ Zq}. The following lemma follows from some elementary arithmetic.

Lemma 2.1. For any u ∈ ( qp )Zq and x ∈ Zq such that u ≡ x(q/p) mod q and any
y ∈ Zq ,

by + ucp = bycp + bucp = bycp + x (mod p).

Groups. For a matrix M, we let the component-wise exponentiation gM denote a
matrix with entries gMi,j . We let

(
gA
)B

denote the matrix with entries g(AB)i,j . We let
Rki(Za×bp ) denote the set of all a× b matrices over Zp of rank i.

Pseudorandom Functions. Informally, a PRF [21] is an efficiently computable function
F : K × X → Y such that no efficient adversary can distinguish the function from a
truly random function given only black-box access. In this paper, we allow the PRF to
additionally take public parameters pp. The advantage Advprf

F (·) against the PRF is
defined in a standard manner and deferred to the full version due to space constraints.
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2.2 RKA-secure PRFs

For a class of related-key deriving functions Φ = {φ : K → K}, the notion of Φ-RKA
security for a PRF F : K×X → Y is defined using an experiments between a challenger
and an adversary A. For b ∈ {0, 1} define the following experiment Exptprf-rka

b :

1. Given security parameter λ, the challenger samples and publishes public parameters
pp to the adversary. Next, the challenger chooses a random key k ∈ K and if b = 0,
sets f(·) def

= F (k, ·). Otherwise, if b = 1, the challenger chooses a random keyed
function f : K ×X → Y .

2. The adversary (adaptively) sends input queries (φ1, x1), . . . , (φQ, xQ) in Φ × X
and receives back f(φ1(k), x1), . . . , f(φQ(k), xQ).

3. The adversary outputs a bit b′ ∈ {0, 1}, and the experiment also outputs b′.

Definition 2.2 (RKA-secure PRF for Φ). A PRF F : K×X → Y is RKA-secure with
respect to class Φ if for all efficient adversaries A the quantity

Advprf-rka
Φ,F (A)

def
=
∣∣∣Pr
[
Exptprf-rka

0 = 1
]
− Pr

[
Exptprf-rka

1 = 1
]∣∣∣

is negligible.

Unique-input RKA security (cf. [7]). We say that an adversary is unique-input in the
above security game if the input queries (φ1, x1), . . . , (φQ, xQ) ∈ Φ×X are such that
x1, . . . , xQ are distinct. A PRF is unique-input RKA-secure if it is RKA secure against
unique-input adversaries.

2.3 Security Assumptions

Learning with errors (LWE) assumption. The LWE problem was introduced by Regev
[32] who showed that solving the LWE problem on average is as hard as (quantumly)
solving several standard lattice problems in the worst case.

Definition 2.3 (Learning With Errors). For integers q > 2 and a noise distribution
χ over Zq, the learning with errors problem (LWE) over n-dimensional vectors is to
distinguish between the distributions {A,Aᵀs + χ} and {A,u}, where m = poly(n),
A← Zn×mq , s← Znq , χ← χm, and u← Zmq .

Regev [32] shows that for a certain noise distribution χ = Ψα,
4 for n polynomial in

λ and q > 2
√
n/α, the LWE problem is as hard as the worst-case SIVP and GapSVP

under a quantum reduction (see also [31, 17] for classical reductions). These results
have been extended to show that s can be sampled from a low-norm distribution (in
particular, from the noise distribution χ) and the resulting problem is as hard as the

4 For an α ∈ (0, 1) and a prime q, let Ψα denote the distribution over Zq of the random variable
dqXc (mod q) where X is a normal random variable with mean 0 and standard deviation
α/
√

2π.
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basic LWE problem [2]. Similarly, the noise distribution χ can be a simple low-norm
distribution [28]. Boneh et al. [14] show that the variant of LWE where the entries of A
are binary and m > n log q is equivalent (modulo a log q-factor loss in dimension) to
LWE over n-dimensional vectors. In this work, we let B ∈ R be an error bound such
that for χ← Ψα, |χ| ≤ B with overwhelming probability.

Low-norm matrix LWE. We work with the right-multiplied matrix form of (low-
norm) LWE, namely, that for a uniformly drawn A ← {0, 1}m×2m, U ← Zm×2m

q ,
S← Zm×mq , and X← χm×2m, the problem is to distinguish between the distributions
{A,SA + X} and {A,U}.

To compare it to the low-norm LWE variant in [14], we note that {A,SA + X}
and {A,AᵀS + Xᵀ} are distributed identically, and a standard hybrid argument shows
that any adversary which can distinguish {A,AᵀS + Xᵀ} from {A,U} can be used to
distinguish {A,Aᵀs + χ} from {A,u} with only a (1/m)-factor loss in advantage.

The DLIN assumption in multilinear groups. In Section 3.2, we rely on the decisional
linear (DLIN) assumption (as stated in Boneh et al. [14]) for the Garg et al. abstraction
of graded multilinear maps [20]. Consider a sequence of groups ~G = (G1, . . . ,G`) with
a set of bilinear maps êi for i ∈ [1, `− 1], and a generator g of G1.

Definition 2.4 (Decisional Linear). The κ-decisional linear (κ-DLIN) assumption in
the presence of a graded `-linear map states that for any integers a, b ≥ κ, and for any
` ≤ j < κ the distributions{

g, gX
}
X←Rkj(Za×bp ) and

{
g, gY

}
Y←Rkκ(Za×bp )

are computationally indistinguishable, in the presence of ~G and {êi}i∈[1,`−1].

The Multilinear Diffie-Hellman Exponent assumption. In Section 5, we will use the
Multilinear Diffie-Hellman Exponent (MDHE) assumption, defined as follows. Consider
a sequence of groups ~G = (G1, . . . ,G`) with a set of bilinear maps êi for i ∈ [1, `− 1],
and a generator g of G1.

Definition 2.5 (Multilinear Diffie-Hellman Exponent). The d-Multilinear Diffie-Hellman
Exponent (d-MDHE) assumption in the presence of a graded `-linear map (as abstracted
by [20]) states that, in the presence of ~G and {êi}i∈[1,`−1], for any integer j ≥ `, the
distribution{

gA,
〈
gS

i·A
〉
i∈[d]

, gB,
〈
gS

i·B
〉
i∈[d]

}
A,B←Rkj(Zj×jp ),S←Zj×jp

is computationally indistinguishable from the distribution{
gA,

〈
gUi
〉
i∈[d]

, gB,
〈
gVi
〉
i∈[d]

}
A,B←Rkj(Zj×jp ), ∀i∈[d],Ui,Vi←Zj×jp

.

We note that the 1-MDHE assumption is essentially equivalent to the 2`-DLIN
assumption (where j = ` and κ = 2` as in [14]), and hence the d-MDHE assumption
can be seen as a generalization of DLIN assumption to the dth exponent of the secret.
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2.4 The Bellare-Cash Framework

Bellare and Cash [7] give a general framework (denoted the BC framework) for con-
structing RKA-secure PRFs for a class Φ using a key malleable PRF, a key fingerprint,
and a collision-resistant hash function. We review their definitions and main theorem
here.

Definition 2.6 (Key Malleable PRF). A PRF F : K×X → Y is key malleable if there
exists an efficient algorithm T, which on input φ ∈ Φ and x ∈ X and with oracle access
to F (k, ·), which satisfies TF (k,·)(φ, x) = F (φ(k), x), for all k ∈ K. Also, we require
that for any distinct x1, . . . , xQ ∈ X , if f : X → Y is a truly random function, then
Tf(·)(φ, x1), . . . ,Tf(·)(φ, xQ) are distributed independently and uniformly in Y .

Definition 2.7 (Key Fingerprint). An element w ∈ X is a key fingerprint if for all
k ∈ K and distinct φ1, φ2 ∈ Φ, F (φ1(k), w) 6= F (φ2(k), w).

Definition 2.8 (Compatible Hash Function). For a fingerprint w, a hash function
Hcom : X × Y → R is compatible if the set of oracle queries made by TF (k,·)(φ,w)
over all φ ∈ Φ is disjoint from the set of oracle queries made by TF (k,·)(φ, z) over all
z ∈ R and φ ∈ Φ.

Theorem 2.9 (c.f. [7, Theorem 3.1], paraphrased). For a fixed class Φ of related-key
deriving functions, let F : K × X → Y be a key malleable PRF for Φ, w ∈ X a key
fingerprint for F and Φ, and Hcom : X × Y → X a compatible hash function. Define
Frka : K ×X → Y as

Frka(k, x) = F (k,Hcom(x, F (k,w))).

For any probabilistic polynomial-time (PPT) adversary A against the RKA PRF Frka

for the class Φ, there exist PPT adversaries B against the PRF security of FLWE and C
against the collision-resistance of the hash function Hcom such that

Advprf-rka
Φ,Frka

(A) ≤ Advprf
F (B) + Advcr

Hcom
(C) .

3 New RKA-secure PRFs Using the BC Framework

In this section, we use the BC framework [7] to construct new RKA-secure PRFs.
We introduce two classes of related-key functions, a linear (Φlin∗) and an affine (Φaff)
class, and show that the key homomorphic PRFs from Boneh et al. [14] can be used
to instantiate the BC framework. The main technical challenge requires using the key
homomorphism property to construct appropriate transformers required in the BC
framework.

3.1 RKA-secure PRFs for a Restricted Linear Class Φlin∗

Boneh, Lewi, Montgomery, and Raghunathan [14] constructed the following PRF that is
almost key homomorphic and showed its pseudorandomness under the LWE assumption.
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The PRF FLWE. For parameters m, p, and q ∈ N such that p | q, the public parameters
of the PRF are binary matrices A0,A1 ∈ Zm×mp . The PRF key is a vector k ∈ Zmq . The
PRF FLWE : Zmq → Zmp is defined as follows:

FLWE(k, x) =

⌊∏̀
i=1

Axi · k

⌋
p

. (3.1)

Theorem 3.1 (cf. [14], paraphrased). The function FLWE is pseudorandom under the
LWE assumption for suitable choices of the parameters.

The class Φlin∗ . Recall the definition of ( qp )Zq. We consider a class of linear RKA
functions defined as follows:

Φlin∗ = {φa : Zmq → Zmq | φa(k) = k + a}a∈( qp )Zmq . (3.2)

In other words, Φlin∗ is identical to the class Φlin = {φa : Zmq → Zmq | φa(k) =
k + a}a∈Zmq of all possible linear transformations of the key (the class for which an
RKA-secure PRF is given in [7] under the DDH assumption), except that in Φlin∗ we
have the added restriction that the transformation must be an element of ( qp )Zmq .

We use the homomorphic property of the PRF to construct a transformer, that we
denote T

f(·)
lin , in a straightforward manner: Tf(·)

lin (φa, x) := f(x) + FLWE(a, x). To use
the BC framework, it is necessary to show that for the class of RKA functions Φlin∗ , the
PRF and the transformer satisfy the malleability and uniformity properties.

Lemma 3.2 (Malleability). For all k ∈ Zmq , φ ∈ Φlin∗ , and x ∈ {0, 1}`, it holds that

T
FLWE(k,·)
lin (φ, x) = FLWE(φ(k), x). (3.3)

Proof. Fix a key k ∈ Zmq and x ∈ {0, 1}`. Let φa denote a function in Φlin∗ correspond-
ing to a ∈ ( qp )Zmq . Define the product of matrices P =

∏`
i=1 Axi . From the definition

of the transformer TFLWE(k,·)
lin the left side of equation (3.3) equals bPkcp + bPacp.

The right side of the equation is bP(k + a)cp = bPk + Pacp. As a ∈ ( qp )Zmq , it
holds that Pa ∈ ( qp )Zmq . Applying Lemma 2.1 on each coordinate, it holds that
bPk + Pacp = bPkcp + bPacp, as required.

The following lemma follows straightforwardly from the definition of Tf(·)
lin .

Lemma 3.3 (Uniformity). If f : {0, 1}` → Zmp is a random function and x1, . . . , xQ ∈
{0, 1}` are distinct, for any functions φ1, . . . , φQ ∈ Φlin∗ , the values Tf(·)

lin (φi, xi) are
independently and uniformly distributed in Zmp .

Next, we show that any w ∈ {0, 1}` is a key fingerprint for Φlin∗ .

Lemma 3.4 (Fingerprint). For any w ∈ {0, 1}`, k ∈ Zmq , for any distinct φ1, φ2 ∈
Φlin∗ , it holds that FLWE(φ1(k), w) 6= FLWE(φ2(k), w).
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Proof. For i ∈ {1, 2}, let φi = φai for vectors ai ∈ ( qp )Zmq . Let P =
∏`
i=1 Awi ,

the product of full-rank matrices. As φ1 and φ2 are distinct and P is full-rank over
Zq, it holds that P(a1 − a2) = u for some non-zero u. Moreover, as a1 and a2 are
in ( qp )Zmq , the difference (a1 − a2) and therefore u are in ( qp )Zmq . Now, note that
FLWE(φ1(k), w) = bP · k + P · a1cp = bP · k + P · a2 + ucp. Applying Lemma 2.1,
this in turn equals bP · k + P · a2cp+bucp = FLWE(φ2(k), w)+bucp. As u ∈ ( qp )Zmq
and is non-zero, bucp is also non-zero in Zmp concluding the proof of the lemma.

Consider a collision-resistant hash function H : {0, 1}` × Zmq → {0, 1}`−1 and the

fingerprint w = 0`. We define H(Φlin∗ )
com : {0, 1}` × Zmq → {0, 1}` as H(Φlin∗ )

com (x, y) =
1‖H(x, y) and note that it is a compatible hash function. Applying Lemmas 3.2–3.4 and
Theorem 3.1 to the BC framework, Theorem 2.9 implies the following result.

Theorem 3.5. Under the LWE assumption and the collision-resistance of the hash
function H , the function Frka-lin : Zmq × {0, 1}` → Zmp defined as:

Frka-lin(k, x) = FLWE

(
k, H(Φlin∗ )

com

(
x, FLWE

(
k, 0`

)))
is an RKA-secure PRF with respect to Φlin∗ .

3.2 RKA-secure PRFs for an Affine Class Φaff

In addition to the LWE-based almost key homomorphic PRF, Boneh et al. [14] also
constructed a “fully” homomorphic PRF under the DLIN assumption over groups
equipped with a multilinear map.

The PRF FDLIN. For parameters m and ` ∈ N, let ~G = (G1, . . . ,G`) be a sequence of
groups equipped with a graded `-multilinear map {êi}i∈[`−1]. The public parameters
comprise pp =

(
gA0 , gA1

)
, where A0,A1 ← Rk`

(
Z`×`p

)
. The PRF key K is a matrix

in Zm×`p . Define FDLIN : Zm×`p × {0, 1}` → (G`)m×` as follows:

FDLIN(K, x) = (g`)
W, where W = K ·

(∏̀
i=1

Axi

)
. (3.4)

Theorem 3.6 (cf. [14], paraphrased). The function FDLIN is pseudorandom under the
DLIN assumption for suitable choices of parameters.

As noted by Boneh et al., the PRF can be evaluated at a point x = x1 . . . x` ∈ {0, 1}`
given the the public parameters pp and secret key k ∈ Z`p using the graded bilinear maps
êi : G1 × Gi → Gi+1. The matrix multiplication is carried out one step at a time by
nesting these bilinear maps as follows:

FDLIN(K, x) = ê`−1

(
gKAx1 , ê`−2

(
gAx2 , . . . ê2

(
gAx`−2 , ê1

(
gAx`−1 , gAx`

))))
,

where gKAx1 is computed “in the exponent” given K and gAx1 . A pairing ê
(
gA0 , gA1

)
of matrices given in the exponent is done by computing the component-wise dot products
of rows of A0 with columns of A1 using the bilinear map ê.
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Observe that this PRF is identical to the DLIN-based PRF in [14] except that the key
K is now a matrix. This is required to define a meaningful affine class over the key space.
The pseudorandomness extends to the case where K is a matrix by considering the rows
of K, k1

ᵀ, . . . ,km
ᵀ to be m independent keys of the original DLIN-based PRF. The

key homomorphism also extends in a straightforward manner.

The affine class Φaff . With the above DLIN-based PRF, we can consider the following
affine class of related-key deriving functions. We define

Φaff = {φC,B : Zm×`p → Zm×`p | φC,B(K) = CK + B}, (3.5)

for matrices C ∈ Zm×mp and B ∈ Zm×`p constrained as follows: (a) the class Φaff is
claw-free, and (b) C is a full-rank matrix.

As in Section 3.1, the key homomorphism of FDLIN allows us to construct a trans-
former, denoted T

f(·)
aff , in the following manner: Tf(·)

aff (φC,B, x) sets f(x) = (g`)
F and

computes (g`)
CF · FDLIN(B, x). In other words, we left-multiply (in the exponent) the

output of f(·) with entries from C and then use the homomorphism of FDLIN to incorpo-
rate B. We use the BC framework and show that for the class of related-key functions
Φaff , the PRF and the transformer satisfy the malleability and uniformity properties.

Lemma 3.7 (Malleability). For all K ∈ Zm×`p , φ ∈ Φaff , and x ∈ {0, 1}`, it holds
that

T
f(·)
aff (φ, x) = FDLIN(φ(k), x). (3.6)

Proof. The proof follows from elementary algebra in the exponent. Let φ = φC,B for
arbitrary C and B. For a key K and input x, let W be the matrix in equation (3.4). By
definition, Tf(·)

aff (φ, x) = (g`)
C·W ·FDLIN(B, x) = FDLIN(CK + B, x) as required. The

last equality follows from the key homomorphism of FDLIN.

The following lemma follows straightforwardly from the definition of Tf(·)
aff .

Lemma 3.8 (Uniformity). If f : {0, 1}` → (G`)m×` is a random function and
x1, . . . , xQ ∈ {0, 1}` are distinct, for any functions φ1, . . . , φQ ∈ Φaff , the values
T
f(·)
aff (φi, xi) are independently and uniformly distributed in (G`)m×`.

Next, we show that any w ∈ {0, 1}` is a key fingerprint for Φlin∗ .

Lemma 3.9 (Fingerprint). For any w ∈ {0, 1}`, for any K ∈ Zm×`q , and for any two
distinct φ1, φ2 ∈ Φaff , it holds that FDLIN(φ1(K), w) 6= FDLIN(φ2(K), w).

Proof. We use the fact that the family Φaff is claw-free. For any key K, this implies that
φ1(K) 6= φ2(K). For i ∈ {1, 2}, let Wi denote the matrix φi(K) ·

(∏`
i=1 Awi

)
. The

product of full-rank matrices Awi is full-rank and as φ1(K) 6= φ2(K), it follows that
W1 6= W2. As FDLIN is defined as (g`)

W for generator g`, it holds that if W1 6= W2,
then (g`)

W1 6= (g`)
W2 concluding the proof of the lemma.
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Consider a collision-resistant hash function H : {0, 1}` × (G`)m×` → {0, 1}`−1

and the fingerprint w = 0`. We define H(Φaff)
com : {0, 1}` × (G`)m×` → {0, 1}` as

H
(Φaff)
com (x, y) = 1‖H(x, y) and note that it is a compatible hash function. Applying

Lemmas 3.7–3.9 and Theorem 3.6 to the BC framework, Theorem 2.9 implies the
following result.

Theorem 3.10. Under the DLIN assumption and the collision-resistance of the hash
function H , the function Frka-aff : Zm×`p × {0, 1}` → (G`)m×` defined as:

Frka-aff(K, x) = FDLIN

(
K, H(Φaff)

com

(
x, FDLIN

(
K, 0`

)))
is an RKA-secure PRF with respect to Φaff .

4 Unique-Input RKA-secure PRFs for an Affine Class

In this section, we construct RKA-secure PRFs from the LWE assumption for a slightly
more restricted notion of RKA security, denoted unique-input RKA security. As ex-
plained in Section 1.3, we work directly with the pseudorandomness proof of FLWE to
show unique-input RKA security against a larger class of affine related-key functions
rather than the restricted linear class Φlin∗ from Section 3.1. To do this, we use the alge-
braic structure that suits the key homomorphism of FLWE to overcome the restrictions
of Φlin∗ required in order to apply the Bellare-Cash framework. We prove unique-input
RKA security for the affine class Φln-aff = {φC,B : φC,B(K) = CK + B}, where C is
a full rank matrix in [−c, c]m×m for a small constant c, and B is an arbitrary matrix in
Zm×mq .

We consider the PRF FLWE where the key k, originally a vector, is replaced by a
matrix K in order to obtain the algebraic structure required for Φln-aff . Recollect the
definition of FLWE from Equation (3.1). For parameters m, p, q ∈ N such that p | q, the
public parameters of the PRF are binary matrices A0,A1 ∈ Zm×mp . The key is now
a matrix K ∈ Zm×mq , and the PRF FLWE : Zm×mq × {0, 1}` → Zm×mp is defined as
follows:

FLWE(K, x) =

⌊
K ·

∏̀
i=1

Axi

⌋
p

. (4.1)

Recollect the bound B for samples drawn from the LWE error distribution Ψα. In
the rest of the section, we set the parameters of the system q, p,m, c,B, λ, ` > 0 such
that the quantity (2m)`cBp/q is negligible in the security parameter λ. This is along the
lines of the parameters chosen in [14]. We state the following theorem for this choice of
parameters:

Theorem 4.1. Under the LWE assumption, the PRF FLWE defined in Equation (4.1) is
RKA-secure against unique-input adversaries for the class Φln-aff .

Proof of Theorem 4.1. In what follows, for a bit string x on ` bits, we use x|j to denote
the bit string comprising bits j through ` of x. Let x|`+1 denote the empty string ε∗.
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Let A be a probabilistic polynomial time unique-input RKA adversary. We consider the
following experiments interacting with A.

Experiment Gj for j ∈ [1, `+ 1].
1. The challenger samples as public parameters full-rank matrices A0,A1 ∈ {0, 1}m×m
⊂ Zm×mq which are sent to the adversary.

2. The challenger creates a lookup table L of pairs (w,Z) ∈ {0, 1}`−j+1×Zm×mq , and
initializes L to contain only the pair (ε∗,R) for some randomly chosen R ∈ Zm×mq .

3. For k ∈ [Q], the adversary (adaptively) sends input queries
(
φ

(k)
C,B, x

(k)
)
∈ Φln-aff×

{0, 1}` to the challenger. For each input query, the challenger checks to see if there
is a pair

(
x(k)|j ,Z

)
in L for some Z ∈ Zm×mq . If there is no such pair, then the

challenger chooses a random Y ∈ Zm×mq , adds the pair
(
x(k)|j ,Y

)
to L, and sets

Z = Y. The challenger returns N =
⌊
CZ

∏j−1
i=1 A

x
(k)
i

+ B
∏`
i=1 A

x
(k)
i

⌋
p

to the

adversary.
4. The adversary outputs a bit b′ ∈ {0, 1}, which the experiment also outputs.

Experiment Hj for j ∈ [1, `+ 1].
1. The challenger samples as public parameters full-rank matrices A0,A1 ∈ {0, 1}m×m
⊂ Zm×mq which are sent to the adversary.

2. The challenger creates a lookup table L of triples (w,Y,Z) ∈ {0, 1}`−j+1 ×
Zm×mq × Zm×mq , and initializes L to contain only the triple (ε∗,R,∆) for some

randomly chosen R ∈ Zm×mq and∆← Ψ
m×m
α .

3. For k ∈ [Q], the adversary (adaptively) sends input queries
(
φ

(k)
C,B, x

(k)
)
∈ Φln-aff×

{0, 1}` to the challenger. For each input query, the challenger checks to see if there is
a triple (x(k)|j−1,Z,∆) in L for some Z ∈ Zmq and∆← Ψ

m×m
α . If there is no such

triple, then the challenger chooses a random Y ∈ Zm×mq and random V0,V1 ←
Ψ
m×m
α , adds the triples

(
0 ‖
(
x(k)|j

)
,Y,V0

)
and

(
1 ‖
(
x(k)|j

)
,Y,V1

)
to L, and

sets Z = Y and∆ = V
x
(k)
j−1

(i.e., V0 or V1 depending on the j − 1th bit of x(k)).
The challenger returns to the adversary the value:

N =

⌊
C
(
ZA

x
(k)
j−1

+∆
)
·
j−2∏
i=1

A
x
(k)
i

+ B ·
∏̀
i=1

A
x
(k)
i

⌋
p

.

4. The adversary outputs a bit b′ ∈ {0, 1}, which the experiment also outputs.

Observe that G`+1 responds to the adversary’s queries identically as in Exptprf-rka
0 .

Hence, Pr
[
Exptprf-rka

0 = 1
]

= Pr[G`+1 = 1].

Lemma 4.2. For all j ∈ [2, `+1], it holds that |Pr[Gj = 1]− Pr[Hj = 1]| is negligible.

Proof. In Experiment Hj , let Mk = CZA
x
(k)
j−1
·
∏j−2
i=1 A

x
(k)
i

and Wk = C∆ ·∏j−2
i=1 A

x
(k)
i

. Since the entries of C lie within [−c, c], the entries of ∆ lie within
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[−B,B], and the entries of each of the j − 2 matrices A
x
(k)
i

lie within {0, 1}, the

entries of Wk must lie within [−cBmj−2, cBmj−2].5 Since A0 and A1 are full rank,
the product of these matrices is also full rank. Since Z is drawn uniformly at random
from Zm×mq , the matrix Mk is distributed uniformly in Zm×mq . Thus, the probability that
bMk + Wkcp 6= bMkcp is at most m2(cBmj−2)p/q. By taking a union bound over
all x ∈ {0, 1}`, we have that the probability that there exists some input x ∈ {0, 1}` for
which bMk + Wkcp 6= bMkcp is at most (2m)`cBp/q. Conditioned on the above event
not occurring, it holds that for all x, bMk + Wkcp = bMkcp which implies that Gj and
Hj respond identically to adversary queries. Therefore |Pr[Gj = 1]− Pr[Hj = 1] | is
bounded by the probability of the above “bad” event, which is negligible for a suitable
choice of parameters.

We now state Lemmas 4.3 and 4.4, the proofs of which are deferred to the full
version. Applying Lemmas 4.2–4.4 with suitable parameters yields Theorem 4.1.

Lemma 4.3. Under the LWE assumption, for all j ∈ [2, `+ 1], it holds that the quantity
|Pr[Gj−1 = 1]− Pr[Hj = 1]| is negligible.

Lemma 4.4. Pr[G1 = 1] = Pr
[
Exptprf-rka

1 = 1
]
.

5 Unique-Input RKA-secure PRFs for a Class of Polynomials

In this section, under the d-MDHE assumption, we show that FDLIN is RKA-secure
against unique-input adversaries with respect to the following class of bounded-degree
polynomials. For positive integers `, d and prime p we define

Φpoly(d) =
{
φP (·) : Z`×`p → Z`×`p | φP (·)(K) = P (K)

}
,

for polynomials P over Z`×`p of degree at most d which have at least one coefficient
matrix (excluding the constant coefficient matrix) which is full rank. In other words,
if P (K) =

∑d
i=0 Ci ·Ki for matrices Ci ∈ Z`×`p , then there exists a j > 0 such that

Cj ∈ Rk`
(
Z`×`p

)
. The proof of the following theorem is given in the full version.

Theorem 5.1. Under the d-MDHE assumption, the PRF FDLIN is RKA-secure against
unique-input adversaries for the class Φpoly(d).

6 Conclusions

We construct the first lattice-based PRFs secure against related-key attacks. We achieve
RKA security under the standard (super-polynomial) LWE assumption for a restricted
linear class of related-key functions and this result is comparable to the DDH-based RKA-
secure PRF construction by Bellare and Cash [7]. Under the powerful multilinear map

5 The fact that entries of ∆ lie within [−B,B] holds only with overwhelming probability, but
we will ignore this detail for ease of presentation, as it does not affect the final theorem.
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abstraction [20], we construct RKA-secure PRFs against a large and natural class of affine
related-key deriving functions with minimal restrictions. We believe this to be the most
expressive affine class of transformations attainable under the Bellare-Cash framework.
We also achieve the weaker notion of unique-input RKA security for an affine class of
related-key deriving functions by considering the LWE-based key homomorphic PRF by
Boneh et al. [14]. We show that by working with the proof of pseudorandomness and
utilizing the algebraic structure of the PRF, we can overcome restrictions on the related-
key class that are necessary to apply the Bellare-Cash framework. Finally, we show how,
under the d-MDHE assumption in the presence of multilinear maps, we can achieve RKA
security against unique-input adversaries for the class of degree-d polynomials. Our
work on constructing new RKA-secure PRFs leads to several interesting open problems:

� Can we construct LWE-based PRFs under the Bellare-Cash framework for a class
less restrictive than Φlin∗? The only known LWE-based PRFs [5, 14] both require
rounding and have “error terms” in proofs that have to be carefully dealt with. This
will require a more careful application of the Bellare-Cash framework.
� Can we construct unique-input RKA-secure PRFs from other LWE-based PRFs by

Banerjee et al. [5] and (more recently) Banerjee and Peikert [4]?
� Can we construct RKA-secure PRFs against unique-input adversaries for classes of

polynomials from more standard assumptions such as LWE or DLIN?
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