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ABSTRACT

We study iterated transductions defined by a class of inverse transducers over the
binary alphabet. The transduction semigroups of these automata turn out to be free
Abelian groups and the orbits of finite words can be described as affine subspaces in
a suitable geometry defined by the generators of these groups. We show that iterated
transductions are rational for a subclass of our automata.
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1. Motivation

An inverse transducer is a type of Mealy automaton where all transitions are of the

form p
a/πp(a)−−−−−→ q; here πp is a permutation of the alphabet depending on the source

state p. We only consider 2 = {0, 1} as input and output alphabet. Selecting an
arbitrary state p as the initial state, we obtain a transduction A(p) from 2∗ to 2∗.
These transductions can be viewed as automorphisms of the complete binary tree 2∗

and the collection of all transductions generates a subsemigroup S(A) of the full
automorphism group Aut(2∗). Similarly one can associate a group G(A) with A by
including the inverses of all transductions. These groups are called automata groups
or self-similar groups and have been studied in great detail in group theory and
symbolic dynamics, see [11, 17] for extensive pointers to the literature. Automata
groups have many interesting properties and have lead to elegant solutions to several
outstanding problems. For example, Grigorchuk’s well-known example of a group
of intermediate growth has a description in terms of a 5-state inverse transducer.

1This work was done at Carnegie Mellon University.



294 K. SUTNER, K. LEWI

Automata groups should not be confused with automatic groups as introduced in
[7] or automatic structures, see [13, 15]. The former are characterized by the group
operations being described directly by finite state machines operating on words over
the generators; the latter are relational first-order structures where the carrier set and
right-multiplication by generators is by finite state machines.

We are here interested in both connections between automata theory and group
theory as discussed in [2]. More precisely, we study the effect of iteration on trans-
ductions: given a transduction f ∈ S(A), write f∗ ⊆ 2∗ × 2∗ for the binary relation
obtained by iterating f . Note that f∗ is a length-preserving equivalence relation
on 2∗. While the first-order structure 〈2∗, f 〉 is clearly automatic and thus has de-
cidable first-order theory, it is difficult to determine when 〈2∗, f, f∗ 〉 is automatic.
We introduce a class of inverse transducers called cycle-cum-chord (CCC) transducers
in section 2 and characterize their transduction semigroups as free Abelian groups.
Moreover, for some CCC transducers the orbit relations f∗ turn out to be automatic
for all transductions f in the semigroup. Since f∗ is length-preserving, it follows from
a result by Elgot and Mezei, [6] that this is equivalent to f being rational. To show
that f∗ is automatic we construct a canonical transition system, which turns out to
be finite for some of the automata under consideration. This scenario is somewhat
similar to the discussion of digital circuits computing functions on the dyadic numbers
in [24]; note that we are dealing with relations rather than functions, though.

The construction of the transition system is based on a normal form for trans-
ductions proposed by Knuth [16] that allows one to show that S(A) is in fact a free
Abelian group. The normal form is also useful to define a natural geometry on 2∗

that describes the orbits of words under f as affine subspaces. As a consequence, it
is polynomial-time decidable whether two transductions give rise to the same equiva-
lence relation and we can in fact construct the minimal transition system for f∗ in the
sense of Eilenberg [5]. In addition, we obtain fast algorithms to compute x f t, to test
whether two words belong to the same orbit under f and the calculate coordinates in
the geometry introduced below.

This paper is organized as follows. In section 2 we introduce inverse transducers
and define cycle-cum-chord transducers. We also show how to construct the canon-
ical transition system that tests orbit equivalence. In the next section, we discuss
Knuth normal form, characterizes the transduction semigroups of CCC transducers
and determine the rationality of orbits of some of these machines. Section 4 contains
comments on related decision problems and mentions open problems.

2. Inverse Transducers

2.1. Transduction Semigroups

We consider Mealy machines of the form A = 〈Q,2, δ, λ 〉 where Q is a finite set,
2 = {0, 1} is the input and output alphabet, δ : Q× 2 → Q the transition function
and λ : Q× 2 → 2 the output function. We can think of 2∗ as acting on Q via
δ, see [3, 20, 14] for background. We are here only interested in inverse transducers
where λ(p, .) : 2 → 2 is a permutation for each state p. When this permutation
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is the transposition in the symmetric group S2 on two letters, we refer to p as a
toggle state and as a copy state, otherwise. Fixing a state p as initial state, we
obtain a transduction A(p) : 2∗ → 2∗ that is easily seen to be a length-preserving
permutation. If the automaton is clear from context we write p for this function; S(A)
denotes the semigroup and G(A) denotes the group generated by all these functions.

If we think of 2∗ as an infinite, complete binary tree in the spirit of [21], we can
interpret our transductions as automorphisms of this tree, see [17, 22]. Clearly any
automorphism f of 2∗ can be written in the form f = (f0, f1)s where s ∈ S2: s
describes the action of f on 2, and f0 and f1 are the automorphisms induced by f on
the two subtrees of the root. Write σ for the transposition in S2. The automorphisms
f such that f = (f0, f1)σ are odd, the others even. Needless to say, A(p) is odd
whenever p is a toggle state and even, otherwise. The whole automorphism group can
be described in terms of wreath products thus:

Aut(2∗) ≃ Aut(2∗) ≀S2 = (Aut(2∗)× Aut(2∗))⋊S2

The components fi arise naturally as the left residuals of f , first introduced by Raney
[19]. It was shown by Gluškov that the residuals of a sequential map are sufficient
to construct a corresponding Mealy automaton, see [8] and [17]. More precisely,
for any word x, define the function ∂xf by (x f) (z ∂xf) = (xz) f for all words z
(for transductions, we write function application on the right and use diagrammatic
composition for consistency with relational composition). It follows that

∂xyf = ∂y∂xf,

∂xfg = ∂xf ∂x fg.

The transduction semigroup S(A) is naturally closed under residuals. In fact, we
can describe the behavior of all the transductions by a transition system C, much the
way A describes the basic transductions: the states are S(A) and the transitions are

f
s/s f−→ ∂sf . Thus C contains A as a subautomaton. Of course, this system is infinite

in general; it is referred to as the complete automaton in [17]. Also note that, in terms
of residuals, the group operation in the wreath product has the form

(f0, f1)s (g0, g1)t = (f0gs(0), f1gs(1)) st

This provides a convenient notation system for inverse transducers. For example,
again writing σ for the transposition in S2, α = (I, α)σ and I = (I, I) specifies an
automatonA known as the “adding machine,” see Figure 1 and [17]. The transduction
semigroup generated by A is isomorphic to N, and the group is isomorphic to Z. If
we think of automorphism α as a map on Z2, the ring of dyadic numbers, as in [24],
we have xα = x+ 1 and the orbit of 0ω under α is dense in Z2.

2.2. Orbit Equivalence and Orbit Trees

Iterating an automorphism f of 2∗ we obtain an equivalence relation f∗, the or-
bit relation or orbit equivalence of f , in symbols ≡f . The group Aut(2∗) naturally
acts on 2∗, so we can think of the partition induced by orbit equivalence as given
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Figure 1: The adding machine over the alphabet 2.

by the subgroup generated by f acting on 2∗. Since all orbits are finite we could
also consider the semigroup generated by f . The classes of ≡f saturate the level
sets 2n and their sizes are tightly constrained, as shown in the next proposition. Sup-
pose u0, u1, . . . , un−1 is the length n orbit of u = u0 under f . If fn is the identity
on the extended word u0 then we obtain two disjoint cycles u00, u1b1, . . . , un−1bn−1

and u01, u1b1, . . . , un−1bn−1 under f . Otherwise there is a single cycle of the form
u00, . . . , un−1bn−1, u01, . . . , un−1bn−1. We will say that u splits or doubles under f ,
correspondingly.

Proposition 1 Let f be an automorphism and u an arbitrary word, write n for the
length of the orbit of u under f . Then either the orbits of u0 and u1 under f are
disjoint and have length n, or they are identical (up to a shift) and have length 2n.

Hence, any orbit has length 2k for some k ≥ 0 and it follows that for any odd
integer r the maps f and f r generate the same orbits. To describe transductions
acting on the infinite binary tree 2∗ it is natural to consider the orbit tree of f , the
quotient structure induced on 2∗ by orbit equivalence. It is easy to see that the
quotient is another infinite tree which we denote Tf . The root of an orbit is the
lexicographically least element of the orbit, which we denote root(u) for any element
u of the orbit; this corresponds to the first canonical form in [12]. Note that the root
function is length-preserving and prefix-preserving: root(x) ⊑ root(xy) for all words
x and y. For our purposes it is convenient to think of the nodes of the orbit tree as
being the roots of the corresponding orbits. We refer to the collection of all roots as
the root language of f . Thus, a node u in Tf either has a single successor u0 or two
successors u0 and u1. We call a tree homogeneous if all nodes at the same level have
the same out-degree. Note that a homogeneous orbit tree is characterized uniquely by
the sequence of these out-degrees. For example, the orbit tree of the adding machine
has degree sequence 1ω. We call a tree regular if it has only finitely many subtrees,
up to isomorphism.

Lemma 2 Let f be an automorphism. Then the orbit tree Tf of f is regular if, and
only if, the root language of f is regular.

Proof. First assume the orbit tree is regular. If the tree is the full infinite binary tree
the root language is 2∗ and we are done. Otherwise we construct a DFA for the root
language as follows. Let Q be the set of subtrees, up to isomorphism, augmented by



Iterating Inverse Binary Transducers 297

a sink ⊥ and define a transition function on Q as follows. If p has two direct subtrees
q0 and q1 in this order, introduce transitions δ(p, i) = qi. If there is only one direct
subtree q let δ(p, 0) = q and δ(p, 1) = ⊥. The initial state is the whole orbit tree and
all states other than the sink are final.

Now suppose the root language R is regular. As in the preceding argument we may
assume that R 6= 2∗, so the minimal automaton for R is a sink automaton. Clearly R
is prefix-closed and a root x is doubling iff x1 /∈ R. But then the number of subtrees
is just the number of left quotients of R minus 1, corresponding to the non-sink states
in the minimal DFA for R. ✷

Lemma 3 Let f be an automorphism. Then the root function of f is rational if, and
only if, the orbit relation of f is rational.

Proof. Since the orbit relation is none other than the relational composition of root
and the converse root−1, rationality of the root function implies rationality of the
orbit relation. For the opposite direction note that root is the standard length-lex
uniformization of the orbit relation, see [1] and [12]. ✷

For example, the orbit tree of the map associated with state 0 in the inverse trans-
ducer in Figure 4 has the form shown in Figure 2. The tree is homogeneous and
3-regular with type (122)ω.

Figure 2: The orbit tree of an automorphism defined by an inverse transducer.

The last two lemmata also immediately imply the following.

Lemma 4 Any automorphism with a rational orbit relation has a regular orbit tree.

Unsurprisingly, the converse is false. For example, one can show that transduc-
tion 0 in the cycle-cum-chord transducer A4

3 fails to have rational orbit relation, see
section 2.4 for definitions and section 4 for a more detailed description. Yet the orbit
tree of 0 is isomorphic to the the tree in Figure 2.
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2.3. The Orbit Automaton

For a general “automaton mapping” it is shown in [8] how to construct the free
automaton, a Moore automaton that represents the mapping. The free automaton is
infinite and it is pointed out in the reference that for specific maps better constructions
exist, in particular when the map is given by a finite state machine. We will now
show how to construct a transition system that recognizes the orbit relation of an
automorphism and is finite precisely when the orbit relation is rational.

Suppose R is a length-preserving binary relation on 2∗. We can define an associated
language

L(R) = { x:y | x R y } ⊆ (2× 2)
∗
.

where the convolution x:y of two words x, y ∈ 2k is defined by

x:y =
x1 x2 . . . xk

y1 y2 . . . yk
∈ (2× 2)k

(since R is length-preserving there is no need for a padding symbol as in [15]). Clearly,
the relation R is rational if, and only if, the language L(R) is regular. Following
Brzozowski [4], the latter condition is equivalent to L(R) having only finitely many
left quotients. In this case, the quotients take the form

(a:b)−1 R = { x:y ∈ (2× 2)
∗ | ax:by ∈ R }

The map u 7→ u−1R defines an equivalence relation ρ on (2× 2)∗ that is easily seen to
be the coarsest right congruence that saturates R. Hence we can construct a minimal
deterministic recognizer for L(R) by using the set of all quotients as the state set.

If we think of a transduction p as a binary relation, then this relation is recognized
by the transducer, interpreted as a standard acceptor over the alphabet 2×2 and with
p as the initial state. The relations we are interested in here are the orbit relations of
automorphisms represented by an inverse transducer. To describe the orbit relation
in terms of Brzozowski [4] style quotients we need to generalize slightly. Given two
automorphisms f, g : 2∗ → 2∗ define the orbit of u under f with translation g to be
u f∗g = { u f ig | i ≥ 0 }. For clarity we will sometimes write orb(u; f, g). Correspond-
ingly, the relation R(f, g) holds on u and v if v ∈ orb(u; f, g). Note that R(f, I) is
simply the orbit relation of f . In general, R(f, g) fails to be an equivalence relation
(and even to be reflexive), but, as we will show in the following lemma, orbits with
translation are closed under quotients.

Lemma 5 (Quotient Lemma) Let f and h be two automorphisms and set b = a h.
For f = (f0, f1) we have

(a:b)−1 R(f, h) = R(fa, ha).

Otherwise, for f = (f0, f1) σ, we have

(a:b)−1 R(f, h) = R(fafa, ha)

(a:b)−1 R(f, h) = R(fafa, faha)

All other quotients are empty.



Iterating Inverse Binary Transducers 299

Proof. First assume f is even. Then orb(au; f, I) = a orb(u; fa, I) and our claim
follows by applying the translation g:

orb(au; f, g) = (a orb(u; fa, I))g

= b (orb(u; fa, I))ga

= b orb(u; fa, ga)

For f = (f0, f1) σ we have f2 = (f0f1, f1f0). It now follows that

orb(au; f, I) = a orb(u; fafa, I) ∪ a orb(u; fafa, fa)

Our claim follows by applying g to this equation. ✷

Given an automorphism F and the corresponding orbit relation F ∗, the lemma
determines the collection of all quotients. Thus we obtain a transition system MF

over alphabet 2× 2 with transitions

R(f, g)
a:b−−→ (a:b)−1 R(f, g).

In this case, all non-empty quotients are final and the behavior of a state R(f, g)
in M is none other than

{ x:y | y ∈ orb(x; f, g) }.
Thus F ∗ is rational if, and only if, MF is finite, in which case we will refer to MF

as the orbit automaton for F .
As a step towards implementation, suppose the original automorphism F lies in

the transduction semigroup of some inverse transducer A. Since all the functions that
occur in the quotients of F are compositions of residuals of F , they also lie in the
transduction semigroup S(A). This leads to a simple representation system: quotient
R(f, g) can be represented by a pair (p, q) of state vectors in A. In this context we
refer to the pair (f, g) as a star pair, f as its star part and g as its translation part.
Residuals on state vectors p and q can be computed via

∂ap = q ⇐⇒ ∃ ai ∈ 2 (a = a1 ∧ qi = pi · ai ∧ ai+1 = pi ∗ ai)
Here we have written p · a = q for the transition function and p ∗ a = b for the output
function, for p, q ∈ Q and a, b ∈ 2. Note that multiple state vectors can represent the
same transduction; however, there is a simple algorithm to test for equivalence in this
sense: we can compute the compound transducer and minimize it as a deterministic
machine over 2× 2. In fact we will see that the transducers introduced in section 2.4
admit a simple normal form.

Of course, there is another problem to contend with: different transductions may
have the same orbit relation. Let us say that two automorphisms are orbit equivalent if
they induce the same orbit relation. Likewise, two star pairs (f, g) and (f ′, g′) are orbit
equivalent if R(f, g) = R(f ′, g′); correspondingly we write f ≈ f ′ or (f, g) ≈ (f ′, g′)
for orbit equivalence. Thus, the automorphism f and g are orbit equivalent if the star
pairs (f, I) and (g, I) are orbit equivalent. Multiple star pairs can represent the same
generalized orbit. In particular, since cycle lengths are always powers of 2 for inverse
binary transducers, we have the following proposition.
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Proposition 6 Let f and h be automorphisms. Then for any odd r and any integer
s: f ≈ f r and (f, h) ≈ (f r, f sh).

Of course, in general Mf will be infinite. For some automorphisms given by an
inverse transducer, Mf turns out to be finite, so that the orbit relation of f is ra-
tional. One well-known example are the so-called “sausage automata” An in [17],
generalizations of the adding machine from above. In wreath notation they are given
by

0 = (0, 0) 1 = (n, 0)σ k = (k − 1, k − 1), 2 ≤ k ≤ n.

Figure 3 shows A5. The orbit tree of transduction 0 in A5 is homogeneous with type
(12222)ω.

1

5

4

3

2

0

0/1

a/a

a/a

a/a

a/a

1/0

a/a

Figure 3: The “sausage automaton” A5, an inverse transducer that generates Z5.

The group generated by An is Zn and the basic transductions are given by a
combination of the successor function of the adding machine and a polyadic version
of perfect shuffle. Let xi ∈ 2r, 1 ≤ i ≤ n, and 1 ≤ k ≤ n. Then

shf(x1, x2, . . . , xn) k = shf(x1, . . . , xkα, . . . , xn)

Here α is again the successor operation defined by the adding machine from section 2.1
and shf is the natural generalization of binary perfect shuffle to a variable number of
arguments of the same length:

shf(x1, x2, . . . , xs) = x1
1x

2
1 . . . x

s
1 x

1
2x

2
2 . . . x

s
2 . . . x1

rx
2
r . . . x

s
r.

It follows that any transduction f in S(An) can be written as

shf(x1, x2, . . . , xn) f = shf(x1αe1 , . . . , xnαen)

Accordingly, it is not hard to see that for any transduction f in S(An) the orbit
relation ≡f is automatic. However, see Lemma 18 for a slightly more complicated
situation in the context of cycle-cum-chord transducers.

2.4. Cycle-cum-Chord Transducers

We now introduce a simple class of inverse transducers whose associated semigroups
will turn out to be free Abelian groups. Unlike with the sausage automata from above,
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the orbits of words under the corresponding transductions can be fairly complicated.
A cycle-cum-chord (CCC) transducer has state set {0, 1, . . . , n− 1} and transitions

p
a/a−→ p− 1, p > 0 and 0

0/1−→ n− 1, 0
1/0−→ m− 1

where 1 ≤ m ≤ n. We will write An
m for this transducer. The diagram of A5

3 is shown
in Figure 4. The source node of the chord is the sole toggle state in these transducers.
As we will see shortly, S(An

m) = G(An
m).

0

1

2 3

4

0/1

1/0

a/a

a/a

a/a

a/a

0 = (4, 2)σ

k = (k − 1, k − 1) 0 < k < 5

Figure 4: The cycle-cum-chord transducer A5
3, an inverse transducer on 5 states with

one toggle state.

Using wreath representations it is easy to verify algebraically that S(An
m) is an

Abelian group. More precisely, we can establish the following two lemmata.

Lemma 7 The transduction semigroup of An
m is Abelian.

Proof. Using wreath representations we have

0 i = (n−1,m−1)σ (i−1, i−1) = (n−1 i−1,m−1 i−1)σ

i 0 = (i−1, i−1) (n−1,m−1)σ = (i−1n−1, i−1m−1)σ

and likewise for all other pairwise products not involving 0. Done by induction. ✷

Lemma 8 (Cancellation Identities) Consider An
m where 1 ≤ m ≤ n and let s =

gcd(n,m), r = m/s. Then the following identities hold in the transduction semigroup
of An

m, for 0 ≤ i < s:

i2 s+ i2 . . . (r−1)s+ i2 m+ im+ s+ i . . . n− s+ i = I

As a consequence, the transduction semigroup S(An
m) is already a group.

Proof. Write gi for the left-hand side of these identities, 0 ≤ i < s. It is
easy to see that for 0 < i the wreath form of gi is (gi−1, gi−1). Furthermore,
g0 = 02 s2 . . . (r−1)s2 mm+ s . . . n− s and it follows that g0 = (gs−1, gs−1). Si-
multaneous induction finishes the argument. ✷
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Note that for n = m we have the identities k2 = I for 0 ≤ k < n. Hence S(An
n) is

finite and isomorphic to the Boolean group 2n.

3. Orbit Rationality

3.1. Knuth Normal Form

According to the preceding remark we can safely ignore the case n = m and assume
that m < n. From the two lemmata it follows that S(An

m) = G(An
m) is a quotient

of Zn−s. To show that the transduction group is in fact isomorphic to Zn−s we use
a method suggested by D. Knuth [16]: since 02m−1 = (n−1, n−1) we can add a new
copy state n to the transducer with both transitions leading to state n − 1, without
changing the semigroup. By repeating this extension step, we can enlarge the state
set to all of N where for all i > 0 we have i = (i−1, i−1). We write Kn

m for the new
transducer.

Lemma 9 (Shift Identities) In the transduction semigroup of Kn
m, m < n, we have,

for all k ≥ 0, the identities

k2 = k +m k + n

Proof. Since 02m−1 = (n−1, n−1) the case k = 0 holds by our definition of state n.
By induction, k + 12 m+ k + 1−1 = (k2, k2)(m+ k−1,m+ k−1) = (n+ k, n+ k), so
we can add a new copy state n + k + 1 with transitions to n + k, without changing
the semigroup. ✷

According to our definition of Kn
m we have for all k ≥ 0

x k =

{
x if |x| ≤ k,

x1 . . . xk (xk+1 . . . xℓ) 0 otherwise.

for any word x.
Write shiftk for the natural shift-by-k operation that replaces a term i by i+ k.

More precisely, in the Knuth extension we can consider a term f = k1
e1 k2

e2 . . . kr
er

where 0 ≤ k1 < k2 < . . . < kr and ei ≥ 1. Then shiftk(f) =
k1 + ke1 k2 + ke2 . . . kr + ker for any k ≥ −k1. Observe that any identity f = I
is then equivalent to shiftk(f) = I. If we select k = −k1 we obtain a normal form:
0e1 k2 − k1

e2 . . . kr − k1
er = I. For example, the cancellation identities from Lemma 8

are all shifts of the basic identity

02 s2 . . . (r−1)s2 mm+ s . . . n− s = I

In a similar fashion it follows that the cancellation identities generalize to all trans-
ductions in Kn

m.
Of particular interest is the case where ei = 1 for all i; we will refer to this flat

representation f = k1 k2 . . . kr as the Knuth normal form (KNF) of f ; we allow r = 0
for the identity map. To generate the KNF of f we interpret the identities from
Lemma 9 as rewrite rules. For example, in K3

2 we have the shift rule k2 → k + 2 k + 3.
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Alas, application of the shift rule alone can lead to infinite loops as in 02 12 2 →
12 22 3 → 22 32 4 → . . . However, in this case, a single application of the cancellation
identity from Lemma 8 immediately terminates the process. Thus, the rewrite system
is weakly terminating.

Theorem 10 (Knuth Normal Form) Every transduction over An
m has a unique

Knuth normal form.

Proof. For n = m the cancellation identities have the form k2 = I and it follows
immediately that every transduction can be written uniquely in the required form.
So assume m < n. For any transduction f in S(An

m) consider the standard semigroup
representation

f = k1
ek1 k2

ek2 . . . kr
ekr

where eki
≥ 1 and 0 ≤ ki < ki+1 < n. If all exponents are equal 1, or if r = 0,

we are done. Otherwise rewrite the expression as follows. First, apply cancellation
according to the identities from Lemma 8 in the leftmost place possible. If none of
these identities apply, use the shift rule derived from Lemma 9, again in the leftmost
possible position. Thus we obtain a sequence of expressions (fi) with f0 = f that
all denote f . We claim that the sequence is finite and thus ends in the desired flat
representation.

Define the weight of f to be
∑

ei. Note that the shift rule preserves weight whereas
a reduction reduces weight. Suppose for the sake of a contradiction that our rewrite
process continues indefinitely for some initial f . Since weights are non-negative we
may safely assume that the weight remains constant. Thus, no reductions apply and
we only use shift rules. For the sake of simplicity let us assume that s = gcd(n,m) = 1
so there is only a single reduction to deal with. The general argument is more tedious
but entirely similar.

Observe that there must be a minimal critical index c such that ec > 1. Define the
essential weight of the expression as the sum

∑
i≥c ei. Again we may assume that the

essential weight of the expression is non-decreasing. Hence ec must always be even
and the shift operation adds ec/2 to ec+m and ec+n. But then, after a sufficiently
large number of steps, there will be a critical block of exponents ec, ec+1, . . . , ec+n−1

with the property that ei ≤ 1 for i < c and ei = 0 for i ≥ c + n; c increases by 1
at each step. Since ec is even we are essentially operating on an n-tuple of natural
numbers:

(a0, . . . , an−1) 7→ (a1, a2, . . . , am + a0/2, . . . , an−1, a0/2)

We may safely assume a0 to be positive. Since n and m are coprime all entries in
the vector will be positive after at most m(n − 1) + 1 steps. But note that the first
m − 1 entries in the vector must then all be even and positive. Hence we can apply
cancellation and we have the desired contradiction.

Now suppose that f has two KNFs, say, f = k1 k2 . . . kr and f = ℓ1 ℓ2 . . . ℓs.
Assume for the sake of a contradiction that k1 < ℓ1. Then for any word x of length k1
we have xa f = xa according to the first description, but xa f = xa according to the
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second. By a symmetric argument, k1 = ℓ1. Proceeding by induction we find r = s
and ki = ℓi, as required. ✷

We will write KNF(f) for the Knuth normal form of a transduction in G(An
m),

KNF≤k(f) for the first k terms in KNF(f) and KNF1(f) for the first term (assuming
f 6= I). Note that KNF(k) = shiftk(KNF(0)) where shiftk is the shift-by-k operation
from above. Orbit equivalence of two transductions f and g implies that KNF1(f) =
KNF1(g). It is easy to see that KNF≤k(f) = KNF≤k(g) whenever 0

k f = 0k g. Hence
f = g if, and only if, 0ω f = 0ω g.

We mention that a Knuth extension and Knuth normal form also exists for sausage
automata, the shift identities here take the form k2 = k + n. However, there are no
cancellation identities, the semigroup is distinct from the group generated by these
automata. At any rate, we can now pin down the structure of the transductions
semigroups S(An

m).

Corollary 11 For m < n, the transduction semigroup of An
m is isomorphic

to Zn−gcd(n,m).

Proof. For m < n, by lemmata 7 and 8, we have that S(An
m) must be a quotient of

Zn−gcd(n,m). For simplicity assume that n and m are coprime and consider the group
epimorphism Φ : Zn−1 → S(An

m) . By the theorem, any element e in the kernel of Φ
defines a transduction f = Φ(e) that has trivial KNF and whose reduction requires
only the cancellation identities from Lemma 8. But none of the identities apply to f ,
so f must in fact be the identity. Thus Φ is an isomorphism. ✷

The theorem also shows that for any ℓ the stabilizer Stabx of x ∈ 2ℓ is non-empty.
In fact, there are transductions that fix every word of length ℓ, but have no fixed
points among words of length ℓ+1. Another important consequence is that the whole
group acts transitively on all the level sets.

Corollary 12 The transduction semigroup of An
m acts transitively on all the level

sets 2ℓ, ℓ ≥ 0.

Proof. By induction assume that S(An
m) acts transitively on 2ℓ. Hence, given

u, v ∈ 2ℓ there is some transduction f such that u f = v. By the theorem there
is a transduction h such that h is the identity on 2≤ℓ but h toggles the last bit in any
word in 2ℓ+1. But then ua f = vb and ua fh = vb. ✷

It follows that the orbit of 0ω under S(An
m) is dense. We write f =ℓ g if x f = x g

for all words x ∈ 2ℓ.

Corollary 13 For any two transductions f and g of An
m we have f =ℓ g if, and only

if, KNF<ℓ(f) = KNF<ℓ(g).

Proof. Since the terms of the normal form of f outside of KNF<ℓ(f) all lie in the sta-
bilizer of 2ℓ the implication from right to left is immediate. For the opposite direction
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let ℓ be minimal such that f =ℓ g but KNF<ℓ(f) 6= KNF<ℓ(g), say, KNF<ℓ−1(f) = α
and KNF<ℓ(g) = α ℓ− 1. But then 0ℓ f 6= 0ℓ g, contradiction. ✷

3.2. Orbit Geometry

In this section we will show that the orbits of a cycle-cum-chord transducer have a
simple geometric interpretation.

Lemma 14 Let f be a transduction over a CCC transducer An
m. Then the orbit tree

of f is homogeneous and regular. More precisely, letting KNF1(f) = r, the orbit tree
of f doubles exactly at levels r +mN for m < n, and at level r for n = m.

Proof. For m = n the orbit of a word x has length 1 when |x| ≤ r and length 2
otherwise: letting f = k1 k2 . . . ks where r = k1, 0 ≤ ki < ki+1 < n, we can see that
f toggles exactly the bits in positions ki +mN.

Assume m < n and consider the case r = 0. Assume by induction that x is a word

of length ℓ = km such that the f -orbit of x has length 2k. Then KNF1(f
2k) = km

so that xa f2k = xa. Similarly xv f2k+1

= xv for all v ∈ 2m and our claim follows.
Lastly, for r > 0, note that f is the identity on all words up to length r and, for
x = uv where |u| = r, we have x f = u(v g) where g = ∂uf and g is odd. ✷

It follows that the root language of An
m consists of all prefixes of

⋃

x∈2r

x(02m−1)
∗

for m < n and
⋃

x∈2r x02∗ for m = n.

For transducers of the form An
1 it follows that 0 acts transitively on all level sets 2k

of 2∗: all nodes in the orbit tree double. Hence, in S(An
1 ) two transductions f

and g are orbit equivalent if, and only if, KNF1(f) = KNF1(g). The orbit tree of
An

1 coincides with that of the adding machine in Figure 1: the tree degenerates
into a one-way infinite path. However, the successor function computed by An

1 is
more complicated and we are not aware of a simple combinatorial description. The
corresponding automorphisms are conjugate in the group of all automorphisms, see
[10]. In the general case we also need m of the basic transductions to obtain a
transitive action of the level sets.

Lemma 15 For any CCC transducer An
m let H be the group of transductions gen-

erated by i, 0 ≤ i < m. Then H acts transitively on the level sets 2ℓ. For ℓ = km

the quotient group H ′ obtained by factoring with respect to i2
k

acts simply transitively
on 2ℓ.

Proof. Since our transductions are sequential it suffices to consider only levels
ℓ = km. Consider two words x and y of length ℓ. Suppose by induction that
x f = y for some f in H and consider arbitrary bit sequences a0, . . . , am−1 and



306 K. SUTNER, K. LEWI

b0, . . . , bm−1 of length m. Note that xa0 f0
e0 = yb0 for e0 = 0 or e0 = 2k ac-

cording to the last lemma. Proceeding inductively we can find ei ∈
{
0, 2k

}
such

that xa0 . . . am−1 f0
e0 . . .m−1em−1 = yb0 . . . bm−1. Thus H also acts transitively

on 2(k+1)m, as required. Since the coefficients are uniquely determined modulo 2k+1,
the second claim also follows. ✷

3.3. Intrinsic Coordinates and Amenable Transducers

One important consequence of the last lemma is that it provides a natural coordinate
system for the level set 2km: for every ℓ = km there is a coordinate map, a bijection

2ℓ → Z/(2k)× . . .× Z/(2k)

where the product on the right has m terms. We will write 〈w 〉ℓ ∈ (Z/(2k))m

for the coordinates of a word w: 〈w 〉ℓ = (a0, . . . , am−1) if, and only if, w =
0ℓ 0a01a1 . . .m−1am−1 . We use the notation x ≡ y to express that two integer vec-
tors of length m are componentwise congruent modulo 2k. Also, for a transduc-
tion f , define the ℓ-coordinates of f by 〈 f 〉ℓ =

〈
0ℓ f

〉
ℓ
. For example, in A3

2, letting

f = 0−113 we get 〈 f 〉2k = (2k − 1, 3) for k ≥ 2. By commutativity it follows that〈
0ℓ f i

〉
ℓ
≡ i · 〈 f 〉ℓ and

〈
0ℓ f∗

〉
ℓ
≡ N · 〈 f 〉ℓ, so that the orbit of 0ℓ is a linear sub-

space of (Z/(2k))m. Again by commutativity general orbits can be described as affine
subspaces of (Z/(2k))m:

〈w f∗ 〉ℓ ≡ 〈w 〉ℓ + N · 〈 f 〉ℓ
In fact, all these orbits are translations of the basic linear subspace 0ℓ f∗. Since
our transductions are sequential maps it suffices to consider only words of length
ℓ = km where k ≥ 0: two transductions f and g are orbit equivalent if they are orbit
equivalent for words of length ℓ = km. It follows from the coordinate representation
of orbits that f and g are orbit equivalent for words of length ℓ if, and only if, for
some odd integer z = zℓ, possibly depending on ℓ, we have 〈 f 〉ℓ ≡ z · 〈 g 〉ℓ. Thus, for
fixed ℓ, simple modular arithmetic suffices to determine orbit equivalence, given the
ℓ-coordinates of the two transductions.

To deal with the general case, recall that a sequence (ai) of integers is coherent
if ai = ai+1 (mod 2i). A sequence of vectors of integers is coherent if the corre-
sponding component sequences are, see [9]. It is easy to check that the vector se-
quence (〈 f 〉km)k≥0 is coherent. Thus, the local coordinates 〈w f 〉km define a vector
〈 f 〉 ∈ Zm

2 of m dyadic numbers. For the example f = 0−113 in A3
2 from above we

get

〈 f 〉 = (0.1111 . . . , 0.11000 . . .) ∈ Z2
2

using the standard digit notation for Z2. Note, though, that for A3
2 the dimension

of the coordinate system coincides with the number of generators of the transduction
group; in general the situation is more complicated. Write ν2(x) for the dyadic valua-
tion of x in Z2 and similarly ν2(x) for a vector x over Z2, see [9]. Then the projection
of 0ℓ f∗ onto the ith component has cardinality 2k−ν2(ei) where ei is the ith compo-
nent of the ℓ-coordinates of f as long as k ≥ ν2(ei). Hence, for two transductions to
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be orbit equivalent on 2ℓ their ℓ-coordinates have to have the same dyadic valuations.
This can be strengthened to a characterization of orbit equivalence as follows.

Theorem 16 Let A be a cycle-cum-chord transducer and f and g two transductions
in S(A). Then f and g are orbit equivalent if, and only if, the following two conditions
hold:

1. ν2(〈 f 〉) = ν2(〈 g 〉), and
2. 〈 f 〉 = ζ 〈 g 〉 for some unit ζ ∈ Z2.

Likewise, (f, h1) and (g, h2) are orbit equivalent if, and only if, the following two
conditions hold:

1. f and g are orbit equivalent, and

2.
〈
h−1
1 h2

〉
= ζ 〈 f 〉 for some ζ ∈ Z2.

Proof. Let f, g ∈ S(An
m) be two transductions and consider a word w of length km.

Write (e0, . . . , em−1) and (e′0, . . . , e
′
m−1), respectively, for the ℓ-coordinates of f and g.

As already mentioned, the projection of an orbit w f∗ onto the ith axis, 0 ≤ i < m,
has cardinality 2k−ν2(ei) for k ≥ ν2(ei), so a necessary condition for f and g to be
orbit equivalent is that ν2(〈 f 〉) = ν2(〈 g 〉). Suppose that this condition holds. If f
and g are orbit equivalent then for all k there exists a unit zℓ in Z/(2k), such that

〈 f 〉ℓ ≡ zℓ · 〈 g 〉ℓ .
By Hensel’s lemma, the sequence (zℓ) is coherent and thus defines ζ ∈ Z2, as required.
For the opposite direction note that ζ gives rise to a coherent sequence (zℓ) of odd
integers, see [9], which solve the preceding equations.

For the second part consider two star pairs (f, h1) and (g, h2) and let h = h−1
1 h2.

In this case orbit equivalence means that for all k we have

N 〈 f 〉ℓ ≡ N 〈 g 〉ℓ + 〈h 〉ℓ .
But then 〈h 〉ℓ lies in the linear subspace N 〈 g 〉ℓ and we must have N 〈 f 〉ℓ ≡ N 〈 g 〉ℓ
so that f and g orbit equivalent. Hence, for all k there must exist a zℓ in Z/(2k), not
necessarily a unit, such that

〈h 〉ℓ ≡ zℓ 〈 f 〉ℓ
Our claim follows. The opposite direction is entirely similar. ✷

There is an interesting special case where we can obtain a better description. Call
a CCC transducer An

m amenable if the dimension of the coordinate system for words
coincides with the number of free generators. In other words, the transduction group
is isomorphic to Zm, which is equivalent to n− gcd(n,m) = m. It is easy to see that
An

m is amenable if, and only if, m = n− d where d < n divides n.
In an amenable transducer we can express ℓ-coordinates directly in terms of the

group representation. To keep notation manageable, assume that n and m are co-
prime, so that m = n− 1. Letting f = (a0, . . . , am−1) ∈ Zm and ℓ = km we have

〈 f 〉ℓ ≡ (a0, . . . , am−1)
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In other words, there is no need to recompute the ℓ-coordinates for each ℓ separately.
In this setting we can also express residuals conveniently as follows.

∂s(f) = (a1 − a0, . . . , am−2 − a0,−a0/2) if a0 is even,

∂0(f) = (a1 − a0 − 1, . . . , am−2 − a0 − 1,−⌈a0/2⌉ − 1) if a0 is odd,

∂1(f) = (a1 − a0 + 1, . . . , am−2 − a0 + 1,−⌈a0/2⌉+ 1) if a0 is odd.

In the general case these operations are applied to the first terms in m/s blocks of
length s, followed by a cyclic rotation to the left. Amenability also yields the next
theorem.

Corollary 17 For amenable cycle-cum-chord transducers, orbit equivalence is decid-
able in polynomial time.

Proof. First consider two transductions f and g. By amenability, 〈 f 〉 is a vector of
integers and likewise for g. By the theorem, we have f ≈ g if, and only if, ν2(〈 f 〉) =
ν2(〈 g 〉) and the system 〈 f 〉 = z · 〈 g 〉 has a solution, a dyadic rational. The latter
condition is equivalent to figj = fjgi for all i, j where fi and gi denote the group
representation of f and g, respectively. For two star pairs (f, h1) and (g, h2) let
again h = h−1

1 h2. For orbit equivalence we need This time, apart from testing orbit
equivalence of f and g, we have to check the solvability of the equations 〈h 〉 = z ·〈 f 〉.

It is clear that the arithmetic operations required to test orbit equivalence are all
polynomial in the size of the input. ✷

The position of point 〈h 〉 in the orbit of f in the last proof may be fractional in
the sense that the solutions z define a dyadic rational. As an example, consider A3

2

and let h = (1, 3) and f = (3, 9). Then the first few positions of the point for
increasing ℓ-values are given by 1, 3, 3, 11, 11, 43, 43, 171, 171, 683, 683, 2731, . . . which
is the standard sequence representation of 1/3 in Z2.

Call an inverse transducer A orbit rational if f∗ is rational for all f in S(A).
To determine orbit rationality of a CCC transducer An

m let s = gcd(n,m) and set
n′ = n/s, m′ = m/s. We refer to An′

m′ as the reduct of An
m. It is clear from the

definitions that the transition diagram of the reduct is s-partite. As a consequence,
the orbits of An

m can be described in terms of the orbits of the reduct and the shuffle
operation defined in section 2.3 as follows.

Lemma 18 Let An
m be a CCC transducer, s = gcd(n,m) and An′

m′ its reduct. For

0 ≤ k < m let k0 = k div s, k1 = k mod s and write f = An
m(k) and g = An′

m′(k0).
Then for words xi ∈ 2k we have

shf(x0, x1, . . . , xs−1) f = shf(x0, . . . , xk1 g, . . . , xs−1)

The proof is straightforward from the definitions and will be omitted. As an ex-
ample, consider A6

2 so that s = 2, n′ = 3 and n′ = 1. Write gi for A3
1(i), i = 0, 1 and

let k = A6
2(k). Since we are in the binary case we write the customary x ‖ y instead

of shf(x, y). Then (x ‖ y) 0 = x g0 ‖ y, (x ‖ y) 1 = x ‖ y g0, (x ‖ y) 2 = x g1 ‖ y and
(x ‖ y) 3 = x ‖ y g1.
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The lemma generalizes to other generators p to composite transitions in the follow-
ing way. Suppose f is an arbitrary transduction over An

m. It follows from the lemma
that there are transductions gi over An′

m′ such that

shf(x0, x1, . . . , xs−1) f = shf(x0 g0, . . . , x
s−1 gs−1)

Conversely, given the gi’s there is a corresponding f . As an immediate consequence
we have that the reduct An′

m′ must be orbit rational whenever An
m is orbit rational.

The converse requires a stronger property than just orbit rationality, we have to be
able to determine the position of a word in an orbit. The problem of determining
t ≥ 0 such that y = x f t is referred to as the Timestamp Problem in [23]. Surprisingly,
for some CCC transducers such as A3

2, the Timestamp Problem can be solved by a
finite state machine in the sense that there is a transducer that, given x and y, will
output the appropriate t in reverse binary (or determine that no such t exists). One
can combine the timestamp transducers for the gi to test orbit equivalence for f .

3.4. Rational Orbit Relations

Theorem 19 All transducers An
1 and An

n are orbit rational, n ≥ 1.

Proof. First consider An
1 . We have seen that 0 acts transitively on all level sets,

so ≡0 is universal in the sense that two words are equivalent iff they have the same
length. In the general case, our claim follows similarly from Lemma 14: let k be the
leading term of the KNF of f , then x ≡f y iff the prefix of length k of x agrees with
the corresponding prefix of y. Hence, ≡f can be decided by a finite state machine of
size 1 when k = 0, and k + 2 otherwise.

For transducers of the form An
n recall that every transduction in S(An

n) can be
written uniquely in the form f = k1 k2 . . . kr where 0 ≤ ki < ki+1 < n. Thus, f
toggles exactly the bits in positions ki + nN and the orbit of any word of length at
least k1 is a 2-cycle. Clearly, ≡f can be decided by a finite state machine of size at
most n. ✷

Corollary 20 Every transducer of the form Amt
m is orbit rational for m, t ≥ 1.

By using Lemma 5 and corollary 17 one can construct a minimal finite state machine
on 35 states decides orbit equivalence of 0 for A3

2. The following theorem explains why
this construction terminates; a similar argument also provides a plausibility argument
for the state complexity of the machine.

Theorem 21 Every transducer of the form A3t
2t is orbit rational for t ≥ 1.

Proof. It is shown in [23] that for A3
2 timestamps can be determined by transducers.

Together with the comment following Lemma 18 it therefore suffices to show that the
common reduct A = A3

2 is orbit rational. As we have seen, the transduction group
of A is isomorphic to Z2. Consider the set Q ⊆ Z2 obtained by closing (f, I) under
quotients as in Lemma 5. For the time being, let us focus on Q0, the projection on
the first component. Note that Q0 is the orbit of f under the map π(g) = ∂0g when
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g is even and π(g) = ∂0g
2 otherwise. It is not hard to see that the orbit of f must

contain on odd function, say, πr(f) = (a, b) ∈ Z2. Then the π-orbit of (a, b), modulo
orbit equivalence, is

(a, b), (2b− 2a,−a), (a− 2b, a− b), (2b, 2b− a), (−a,−b) ≈ (a, b)

Here odd and even steps alternate. At any rate, Q0 is finite.

To see that the second component of Q is also finite note that, using the group
representation, we can compute residuals like so:

∂su =

{
A · u if u is even,

A · u− (−1)sa otherwise.

where

A =

(
−1 1

−1/2 0

)
and a = (1, 3/2)

The rational matrix A has complex eigenvalues of norm 1/
√
2 < 1 and gives rise to

a contraction Q2 → Q2. We can over-approximate the operations required for the
second components of Q by a map Φ : Q2 → P(Q2) defined by

Φ(u) = {A · u+ ca+w | c ∈ {0,±1} ,w ∈ W }.

Here W is a set of residuals obtained from the transductions in Q0. Since A is a
contraction the closure of h under Φ is a bounded set in Q2, containing only finitely
many integral points. ✷

The fact that the matrix A in the last proof induces a contraction has the con-
sequence that the complete automaton of A3

2 has 8 non-trivial strongly connected
components all of which are all finite. Note that the complete automaton admits

an involution that sends f
s/t−→ g to f−1 s/t−→ g−1. Omitting the component of the

identity, the strong components modulo this involution are listed in Figure 5. The
transductions are given in group notation. A copy of the original transducer appears
as the bottom left component.

A careful discussion of so-called 1/2-homomorphisms can be found in [18]. In the
special case f = 0 the π orbit has the form (1, 0), (2, 1), (1, 1), (0, 1) so we can exploit
orbit equivalence to rewrite the translations into a form where only one component is
non-zero. We are left essentially with a one-dimensional problem and one can show
that the corresponding contraction has the form

Φ̂(x) = {−(i+ x)/4 | −11 ≤ i ≤ 13 }

Hence all closures under Φ̂ starting at |x| ≤ 13/3 will stay in the interval [−13/3, 13/3].
There are 9 integral points in the interval and, since there are 4 rounds in the quotient
process, an upper bound for the number of states in M is 36, surprisingly close to
the actual value of 35.
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−3,−3

1, 3 1,−2

−2, 13, 1

1, 1

−1,−2 0, 2

2, 0−2,−1

1, 0

−2,−20, 1

0/1

1/0

a/a

a/a

−2,−3

3, 2

−1, 1 1,−1

−3,−2

2, 3

Figure 5: Strong components in the complete automaton for A3
2. The last component

is invariant under the involution.

4. Summary and Open Problems

We have characterized the transduction semigroups associated with a class of inverse
transducers over the binary alphabet as free Abelian groups. For a subclass of these
transducers we can show that the iterates f∗ of any transduction is rational and hence
automatic. We do not know how to decide rationality in general, and, in fact, not
even for the class of amenable cycle-cum-chord transducers. As a concrete example,
consider the transducers A4

m. It follows from our results that they are orbit rational
for m = 1, 2, 4. In the case m = 3 the transducer is amenable and reduced. Following
a suggestion by Cummings and Devanney, we have been able to show that A4

3 has
non-rational orbit relation. Briefly, one can show that no power of a certain 3 × 3
rational matrix, corresponding to matrix A in the proof of Theorem 21, has any
rational eigenvalue. The first step in the argument exploits field theory to reduce the
number of cases that need to be checked to about 500. The second step then relies on
brute-force computation in a computer algebra system to establish that the critical
matrices all fail to have rational eigenvalues. It is far from clear how this method
could be generalized to other cases. In view of the quotient algorithm from above, it
would be interesting to know whether orbit equivalence is decidable in general. As
a special case, one can consider transduction that produce only orbits of bounded
size. Again, we are currently unable to answer these questions even for non-amenable
cycle-cum-chord transducers.

It is straightforward to check whether S(A) is commutative, using standard
automata-theoretic methods. Similarly it is semidecidable whether S(A) is a group,
though the exponential growth in the size of the corresponding automata makes it
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difficult to investigate even fairly small transducers. We do not know whether it is
decidable whether S(A) is a group. Unsurprisingly, many other decidability questions
regarding transduction semigroups or groups of inverse transducers are also open, see
[11, chap. 7] for an extensive list.

Lastly, there are several computational problems that arise naturally in the context
of S(A). The most basic one is the Iteration Problem: for a given transduction
f ∈ S(A), compute x f for a word x. As already mentioned, in the case of A3

2 the
complete automaton has only finite non-trivial strongly connected components. As a
consequence, we can compute x f in time O(|x| log2 w) where w is the weight of f .
Closely related is the Timestamp Problem: given two words x, y ∈ 2k, find a witness t
such that x f t = y or determine that they are not on the same f -orbit. Again for A3

2,
there is a finite transducer that computes the minimal t given input x:y, see [23].
Knuth normal form is a critical tool in the corresponding correctness proofs. In light
of the description of orbits in terms of the coordinate system introduced in section 3.3
it is natural to ask how difficult it is to compute the coordinates of a given word. Again
for A3

2, there is a finite transducer that solves the Coordinate Problem: given x ∈ 22k

as input, outputs the coordinates (s, t) of x, where 0 ≤ s, t < 2k, see [23]. Note that
based on the geometric description of orbits from section 3.3 the Timestamp Problem
can be reduced to the Coordinate Problem. We do not know whether these problems
can be solved in polynomial time in general for cycle-cum-chord transducers.

Acknowledgments: We would like to thank W. Devanney and J. Cummings
for helpful discussions. The anonymous referees have helped greatly to improve the
presentation.
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[8] V.M. Gluškov, Abstract theory of automata. Uspehi Mat. Nauk 16 (1961),
3–62.
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